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ABSTRACT

Motivic Contractibility of the Space of Rational Maps

Elden Elmanto

The moduli stack of G-bundles on a smooth complete curve C over a field, BunG(C),

is an immensely rich geometric object and is of central importance to the Geometric

Langlands program. This thesis represents a contribution towards a motivic, in the sense

of Voevodsky and Morel-Voevodsky, understanding of this stack.

Following the strategy of Gaitsgory and Gaitsgory-Lurie we view the Beilinson-Drinfeld

Grassmanian, GrG(C) as a more tractable, homological approximation to BunG(C). In

the main theorem of this thesis we prove, using two different approaches, that the motive

of the fiber of the approximation map GrG(C) → BunG(C) is, in a number of different

and precise ways, motivically contractible. This fiber is the space of rational maps, as

introduced by Gaitsgory. One approach is to work in the context of E-modules where E

is a motivic E∞-ring spectra and show that there is a motivic equivalence between the

space of rational maps and a version of the Ran space. Via various realization functors,

we obtain the contractibility theorems of Gaitsgory and Gaitsgory-Lurie. A second, novel

approach is to study the unstable motivic homotopy type using a theorem of Suslin and a

model of the space of rational maps as introduced by Barlev.
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CHAPTER 1

Introduction

1.1. Motivation

Let C be a smooth, complete curve over the field of q elements Fq. Suppose G→ C is

a connected group scheme over C such that the generic fiber of G is semsimple and simply

connected. Then, Gaitsgory-Lurie [32] provided a mechanism by which one can calculate

the “number of G-bundles” on C defined over Fq. More precisely, they gave a formula for

the stacky point-count:

(1.1) |BunG(C)(Fq)| :=
∑

(π0BunG(C))(Fq)

1
|Aut(P)| ;

we invite the reader to [33, Theorem 1.4.4.1] for how the count looks like. This point

count verifies the analogue of Weil’s conjecture on Tamagawa numbers associated to the

group G in the function fields situation.

To explain this mechanism, we recall the Beilinson-Drinfeld or the factorization

Grassmanian (see [9], [10] for where this object was introduced; [32] also provides an

excellent exposition. For a shorter, but lucid introduction see [79]), denoted by GrG(C).

This is a prestack (simply a functor from affine schemes to ∞-groupoids) whose T -points

classify triples

(1.2) ((f1, · · · , fi) : T → C,P , γ)
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where fj ’s are T -points of C, P is a G-bundle on the relative curve CT and γ is a

trivialization of P away from the union of the graph of the fj ’s. There is a map

(1.3) approx : GrG(C)→ BunG(C)

which attempts to approximate BunG(C). This map is given by forgetting the auxiliary

data and remembering only BunG(C).

The object GrG(C) is, at least morally, a simpler object than BunG(C) (see the

beginning [32, Section 3] for a more elaborate discussion). If we fix the data of the

T -points (f1, · · · , fi) : T → C, then GrG(C) are copies of the affine Grassmanian over

these points. These affine Grassmanians are loop groups and have the “homotopy type”

of ΩGmG (see [6] on how to make this formal in motivic homotopy theory), i.e., the

(ind-)scheme of maps from the punctured affine line to the group. This is an inherently

simpler object than BunG(C) which is the stack of maps from C into the stack BG.

The strategy in computing (1.1) in [32] is to work with the Beilinson-Drinfeld Grassma-

nian, rather than directly with BunG(C), after proving that the map (1.3) has contractible

fibers in the sense that its étale-homology is acyclic. This is the statement of nonabelian

Poincaré duality as formulated in [32, Theorem 3.2.12]. An earlier version of this theorem,

proved over Spec C, can be found in [31, Section 5].

1.2. What are we trying to do?

Suppose that X is an algebraic variety over a field k. Then its point count is but a

shadow of its “motive.” Pursuing this line of thought, we can ask if the count in (1.1) is a

shadow of the motive of the stack BunG(C).

An adequate theory of motives of varieties over a field exists after Voevodsky’s work

(see [72] for the basic properties of this category, and [51] for a textbook account), and a six

functor formalism has matured after the pioneering work of Ayoub [3] and subsequently by

Cisinski-Déglise [16], leading to the relative theory of motives (see [4] for a comprehensive

summary of the state of the art and the flavor of the subject) and, more generally, of
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motivic categories. In the introduction, we use this term loosely as the value on Spec k

of a functor Sch′op
k → TriCat where Sch′k is some category of k-schemes (e.g. smooth, or

quasi-projective etc.) and TriCat is the 2-category of triangulated categories. This functor

is required to satisfiy Grothendieck’s six functor formalism in the sense of [16, Section

A.5]. Examples include Voevodsky’s category of motives DM, Morel-Voevodsky’s stable

homotopy category SH, the category of modules over various motivic ring spectra such as

the algebraic cobordism spectrum MGL, the algebraic K-theory spectrum KGL, and their

various étale counterparts including the classical derived category of étale sheaves.

In any event, a working theory of motivic categories of stacks is currently in progress —

the theory of motives or, rather, of motivic homotopy theory of quotient stacks is available

after the work of Hoyois on equivariant motivic homotopy theory [42]. One validation for

this formulation of the motive/motivic homotopy type of stacks is the program of Levine

[47] to enhance and reproduce calculations in enumerative geometry using this machinery.

Unfortunately, no such theory is available for general algebraic stacks.

Nonetheless, one can still make sense of stacks as objects in motivic categories over

fields as first formalized in [14] in the language of model categories. Thinking of a stack

as a presheaf of groupoids on affine k-schemes, one restricts it to smooth affine ones and

then extend it to Nisnevich sheaves of spaces; see §2.1. The motivic homotopy type is

the resulting A1-localization. The problem with this approach is that there is a priori no

relation between the atlas of the stack and the stack itself since there is no étale descent in

the motivic homotopy category1 . However, this approach can sometimes still be useful as

there are approximations of these stacks by motives/motivic homotopy types of algebraic

varieties — the first examples are the Morel-Voevodsky and Totaro [55, Chapter 3] models

for classifying stacks of groups. More recently, the notion of exhaustive stacks introduced

by Hoskins and Pepin-Lehalleur in [40] extends this idea to a more general class of stacks,

including BunG(C).

1But see [14] and the appendix of [40] for what happens upon rationalization.
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While our interest is ultimately in BunG(C), this paper attempts to understand the

motive/motivic homotopy type of the fiber of the approximation map (1.3). What we

mean by fiber is the étale local fiber — the fiber of the map approx after étale sheafification

— which, as explained in [32, Section 3.3], is the space of rational maps. We note that the

identification of this fiber requires a nontrivial input: the Drinfeld-Simpson theorem [23]

on Borel subgroup-reductions of G-bundles.

Roughly speaking, a T -point of the space of rational maps between schemes X and Y

(we can actually make sense of for very general targets) RatMaps(X,Y ) classifies maps

from a dense open of X complementary to the graph of a finite nonempty collection of

T -points of X to Y . We prove

Theorem 1.2.1. [See Theorem 5.1.2] Let k be a field and suppose that E is a motivic

ring spectrum in SH(k). Denote by ME(X) the free E-module (see §2.2.0.2) on a motivic

space X. Let C be a curve over a field k, and let Y be a connected, separated scheme

which has a Zariski cover {Uα} where each Uα is a dense open subset of Anα. Then the

canonical map of E-modules:

(1.4) ME(LmotLhRatMaps(C,Y ))→ E

is an equivalence.

Here, Lh denote sheafification with respect to the h-topology. In other words, if we

call ME(X) the E-motive of X, then the E-motive of the (h-sheafification of the) space of

rational maps is equivalent to the E-motive of the point, i.e., its E-motive is contractible.

In the case of the trivial bundle and D = ∅ we see that this refines [32, Lemma 3.6.1]

after étale realization, and over Spec C this also refines the main theorem of [31]. We

also note C neither needs to be smooth or complete, but this generality was already

noted in [31, Remark 2.8.3] as the contractibility statement only depends on a dense open

subscheme of the curve.
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1.2.0.1. Approach 1: generic maps and a theorem of Suslin. One approach to

Theorem 1.2.1 is to work in the unstable motivic homotopy category H(k). The strategy

here is to prove that the map LhRatMaps(C,Y )→ Spec k is a trivial Kan fibration after

application of LA1 , using the Suslin construction (reviewed in §B.0.1.1) as a model. After

checking appropriate closed descent condition, the condition of being a trivial Kan fibration

becomes a problem about extending rational maps. The difficulty stems from the fact

that, by rational maps we mean those whose loci of singularity are defined by graphs of

T -points of C where T is a test affine scheme.

The problem of extending rational maps while keeping the loci of singularity to be

of this form is difficult. We will instead work with a more flexible model considered by

Barlev in his thesis [8]. This model is called the space of generic maps and is denoted

by GenMaps(X,Y ) where X is a scheme and Y is a very general target. In this model,

the loci of singularity are only required to have open complement being universally dense

over the base. If X → T is a map, this means an open subset U ⊂ X such that for any

closed point t ∈ T the fiber Ut is a dense open subset of Xt. Complements of graphs are

examples, but there are generally more such open subsets. These loci of singularity are

more controllable — in fact a theorem of Suslin (see Theorem 3.3.4; this is referred to in the

motivic cohomology literature as Suslin’s “generic equidimensionality theorem”) tells us

that, up to A1-homotopy, these loci can be arranged to have the “expected” fiber dimensions

over the base. We employ this result to show that the map GenMaps(C,Y )→ Spec k is

a trivial Kan fibration (in an appropriate category of prestacks) whenever Y is an open

subset of affine space (see Proposition 3.3.6).

Another advantage of generic maps is that GenMaps(X,−) forms a Zariski cosheaf,

and thus we can extend our contractibility results to more general kinds of target. This

approach was already taken in [8] to obtain extensions of the main contractibility result of

[31].

1.2.0.2. Approach 2: rational maps versus the Ran space. We will deduce Theo-

rem 1.2.1 in a more restricted setting — we have to impose some restrictions on C and on
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E — but in a different way. This approach mimics more closely the original approach of

Gaitsgory in [31]. In this approach we utilize the Ran space of C, which classifies finite

non-empty subsets of C(T ) for any test affine scheme T . To proceed, we break down the

contractibility of RatMaps(C,Y ) into two steps

(1) A motivic equivalence between RatMaps(C,Y ) and Ran(C) in ModE, and

(2) the motivic contractibility of Ran(C) after h-sheafification.

Step (1) formalizes the following geometric idea: if Y ⊂ An is an open dense susbcheme,

then RatMaps(C,Y ) ⊂ RatMaps(C, An) has a complement which is of infinite codimen-

sion hence are motivically equivalent. This motivic equivalence is assured whenever E

is an oriented and connective (in the sense of Morel’s homotopy t-structure) motivic

E∞-ring spectra — for example the algebraic cobordism and motivic cohomology spectra.

We discuss this in §2.2 and prove slight generalizations of [40, Section 2]. The space

RatMaps(C, An) is then easily seen to be a vector bundle over Ran(C).

Part (2) of this approach introduces a variant of the Ran space which is subject to

future investigation. Recall that one of the crucial properties of the Ran space, proved

by Beilinson and Drinfeld, is that it is contractible in the sense that its étale/singular

homology is acyclic (see [31, Appendix] for a proof). We enhance this to the level of

motivic homotopy types

Theorem 1.2.2. Let X be a connected quasiprojective k-scheme, then the map

LhRan(X)→ Spec k is an equivalence in H(k).

The h-sheafification that appears in Theorem 1.2.2 is crucial — note that even if X is

a connected scheme, its motivic homotopy type, and hence its Ran space, might not be

(elliptic curves form a basic class of examples). The proof of Theorem 1.2.2 goes through

an explicit model for the h-sheafification of the Ran space and uses a theorem of Morel

which verifies connectedness in motivic homotopy theory. Instead of classifying just finite

subsets of C, a T -point of this h-sheafified version of the Ran space classifies closed subsets

Z ⊂ X × T where the map Z → T is finite and surjective. We call this the cycle-Ran
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space (see Definition 4.2.4) and we prove that it is an explicit model for the h-sheafification

of the Ran space (see Proposition 4.2.5). In a future work, we aim to provide a recognition

principle for n-fold P1-loop spaces using this version of the Ran space in an analogous

fashion to the result in topology [49, Chapter 5] due to Lurie; the case of infinite P1-loop

spaces was only recently settled in [26].

We emphasize again that approach 2 is strictly weaker than approach 1, but its value

is in clarifying certain motivic aspects of [32] and [31] and also in introducing this new

version of the Ran space which may be of independent interest (certainly, at least to the

author).

1.3. Outline

This thesis consists of five chapters, including the introduction. In Chapter 2, we

introduce the basic objects of our study — the E-motives of prestacks where E is a motivic

E∞-ring spectra. We simply regard a prestack as a presheaf of spaces over SmS and

perform the usual motivic localization, as we explain in §2.1. In §2.2 we proceed to take

its “free E-module” or, as we call it, its E-motive. Putting conditions on E lends us certain

computational leverage — the main result of this chapter is Lemma 2.2.9 which computes

the E-motives of prestacks presented as a colimit of smooth k-schemes where each term

is a compatibly an open immersion in a larger smooth k-scheme. This computation was

observed in [40] but we perform it in a slightly more general setting. The kind of E where

this lemma is valid is quite general — they are essentially oriented motivic spectra over a

field where we have inverted the base characteristic of the base field.

In Chapter 3, we study the homotopy type of the space of generic maps as introduced

by Barlev in [8], beginning with the indexing category of generic maps — the category of

domains are reviewed in §3.1. We study the properties of this space which are important

from the point of view of motivic homotopy theory in §3.2 such as closed gluing. The main

theorem of this chapter occurs in §3.3 as Theorem 3.3.8 which shows that the motivic

homotopy type of the space of generic maps from a curve over a field k into a quasi-affine



17

scheme is contractible as an unstable motivic homotopy type. The argument uses a

theorem of Suslin (Theorem 3.3.4) to “move” the loci of a singularity of a generic map to

a better position, up to A1-homotopy. This theorem is actually more general than the

proof of the contractibility of the E-motive of the space of rational maps which we give in

the next chapter.

In Chapter 4, we study the E-motives of the space of rational maps as understood by

Gaitsgory in [31]. The space of rational maps naturally lives over the Ran space of the

source. It turns out that one can run an analogue of the argument in [31] to show that the

E-motive of the the space of rational maps is equivalent to the E-motive on the Ran space

whenever Lemma 2.2.9 holds. This is Theorem 4.2.18. However, there is no reason why the

E-motive of the usual Ran space should be contractible, i.e., equivalent to the E-motive of

the point. We introduce a variant of the Ran space in §4.1 which is an explicit model for

its h-sheafification. This model of the Ran space leads to a Riemann-Roch computation,

suggested to us by Lurie, which proves in §4.2 that the E-motive of this version of the Ran

space is contractible as Corollary 4.2.7. We believe that this result, and the introduction

of this version of the Ran space is of independent interest.

In Chapter 5 we explain how to recover a more general version of the result in

Chapter 4 from Chapter 3 in §4.2.0.15. Essentially, this follows from [8] and we record it

as Theorem 5.1.2 which we consider to be the main result of this thesis. From this we

recover contractibility results of [31] and [32] in §5.2 after realization.

There are two appendices in this thesis. In Appendix A which states a version of

Gabber’s presentation lemma, crucial to the discussions in Chapter 4. The second is

Appendix B which reviews constructions of motivic homotopy in general settings, recording

down proofs of folk results that we were unable to find in the literature.

1.4. Conventions

We assume the reader is familiar with the basics of motivic homotopy theory using the

syntax of ∞-categories; references are [60], [7, Section 2], [25, Section 2]. Otherwise, a
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review of the constructions — in the generality that the author considers optimal — is

provided in Appendix B. Here are our conventions on motivic homotopy theory.

• By presheaves on a small category C we always mean presheaves of spaces/∞-

groupoids/Kan complexes. We denote this ∞-category by P(C).

• For a base scheme S, we denote by H(S) the ∞-category of motivic spaces, that

is, homotopy invariant, Nisnevich sheaves on the category of smooth schemes over

S, SmS .

• We adopt the following conventions about localizations (in the sense of [48, Section

5.2.7]): suppose that we have an adjunction L : C→ D : i where i is fully faithful.

The reflection of an object X ∈ C is the application of the endofunctor i ◦L on

X. Often we will abusively denote by L the endofunctor i ◦L; the context will

always be clear but note that i ◦L does not necessarily preserve colimits.

• Often we will refer to the endofunctor L as the reflection functor onto the

subcategory D. We say that an arrow f : X → Y is an L-equivalence if L(f) is

an equivalence — saying this is unambigious as the functor i reflects equivalences.

• We denote by LNis, LA1 , Lmot the reflection of presheaves on SmS onto Nisnevich

sheaves, homotopy invariant presheaves and their intersection respectively. So

the terms LNis, LA1 , Lmot-equivalences should be clear to the reader.

• If p : X → S is a smooth S-scheme, we always mean that X is of finite type. An

essentially smooth scheme over k is an inverse limit of smooth S-schemes with

affine transition maps.

• If F is a presheaf of abelian groups we denote its τ -sheafification by aτ (F ), τ any

topology.

• We denote unstable motivic spheres by Sp,q := (S1)p−q ∧Gq
m for p ≥ q, and write

1 for the motivic sphere spectrum. Motivic suspensions are denoted by Σp,q.

• For a motivic spectrum E over a base scheme S we write E ∈ SH(S), or ES for

emphasis.
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Some comments on the notation and implementation of ∞-categories in this thesis:

• We freely use the notions of algebras and modules in higher algebra [49]; see

[34, Chapter 1] for a summary.

• We freely use the basic terminology of∞-topos theory in the sense of [48, Chapter

7].

• Spc is the ∞-category of ∞-groupoids (Kan complexes give a concrete model).

• Maps(X,Y ) is the Kan complex of maps between objectsX,Y ∈ C and map(X,Y ) ∈

C is the internal mapping object.

• [X,Y ] := π0 Maps(X,Y ) denotes homotopy classes of maps between X, Y ∈ C.

• PrL,⊗ —the symmetric monoidal ∞-category of presentable ∞-categories and

colimit preserving functors — has a full subcategory PrLstab of stable presentable

∞-categories.
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CHAPTER 2

The motivic homotopy type and the E-motive of prestacks

In this preliminary section, we will begin describing the environment in which our

study of the space of rational maps take place. We first make sense of what it means to

take the motivic homotopy type of prestacks and, later, its E-motive where E is a motivic

E∞-ring spectrum. We extract the properties of E necessary to make the computation

of the E-motive of the space of rational maps possible and prove that there are many

examples of such E’s — they are essentially connective oriented theories where we have

inverted the base characteristic.

2.1. Prestacks and motivic homotopy theory

Let us begin with some terminology; a review of motivic homotopy theory and relevant

terminology is carried out in Appendix B.

The ∞-category of prestacks is just P(Aff), the ∞-category of presheaves of spaces on

affine schemes. If we are working over a base S, the ∞-category of S-prestacks is P(AffS).

We will also have occasion to consider the fully faithful embedding from the (2, 1)-category

of presheaves of (1−)groupoids, PGpd(AffS), to the ∞-category of S-prestacks

(2.1) PGpd(AffS)
i
↪→ P(AffS).

In particular we may consider algebraic stacks Alg StkS 1 as objects of P(AffS) this way

and obtain an embedding Alg StkS ↪→ PGpd(AffS).

1By this, we mean an fppf sheaf of groupoids X : Schop
S → Gpd such that the diagonal ∆ : X →X ×S X

is representable by an algebraic space and there exists an algebaic space U , called the atlas, equipped
with a morphism U →X is smooth and surjective. This is the definition given in [65, Tag 026N].
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2.1.0.1. We have a fully faithful embedding j : SmAffS ↪→ AffS which induces an

adjunction

(2.2) j! : P(SmAffS) � P(AffS) : j∗

where j∗F := F ◦ j and j! is given by left Kan extension.

Proposition 2.1.1. The functor j! is fully faithful.

Proof. Follows from the fact that SmAffS ↪→ AffS is fully faithful and the fact j! is

computed by a left Kan extension, after applying [48, Proposition 4.3.3.8].

�

2.1.0.2. The inclusion j′ : SmAffS ↪→ SmS again induces an adjunction

(2.3) j′! : P(SmAffS) � P(SmS) : j′∗

Proposition 2.1.2. The functor j′! is fully faithful.

Proof. Same reasoning as in the proof of (2.1.2).

�

2.1.0.3. As a result we obtain a functor

(2.4) Ψ : P(AffS)
j∗→ P(SmAffS)

j′!→ P(SmS)
Lmot→ H(S).

The motivic homotopy type of a prestack F ∈ P(AffS) is then defined to be Ψ(X ). We

remark that since all the functors in sight are left adjoints, the functor Ψ preserves colimits.

If X is an algebraic stack, then its motivic homotopy type is again the application of

the functor Ψ to F thought of as an object of PGpd(AffS).

2.1.0.4. For examples of computations (or, at least, an expression in H(S) in terms

of motivic homotopy type of schemes) of Ψ of quotient stacks, we refer the reader to
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[55, Section 4.3] or [43, Section 2]. For example, over very general bases S, we have

an equivalence in H(S) expressing Ψ(BfppfG) as a colimit of motivic homotopy type of

schemes

(2.5) Ψ(BfppfG) ' colim Lfppf(Ui/G).

For example of G = GLn then we obtain Lmot of Ψ(BfppfGLn) as Lmot of an infinite

Grassmanian.

2.1.0.5. We will use the following conventions for A1-homotopy sheaves. Recall that if

X is an ∞-topos we have an intrinsic notion of homotopy groups [48, Definition 6.5.1.1]

(2.6) πX
n (X) : X →X ♥

/X ,

here X ♥ denotes the underlying topos of the (also known as the discrete category of

0-truncated objects, see [48, Definition 5.5.6.1]). Picking a base point, i.e., a morphism

from the terminal object x : 1→ X defines the object

(2.7) x∗πX
n (X) : X →X ♥

/X →X ♥
/1 'X ♥,

which we write as πX
n (X,x) := x∗πX

n (X) and we call the n-th homotopy sheaf of X

pointed at x. As usual πX
n (X,x) is a group object for n ≥ 1 and is an abelian group

object for n ≥ 2.

Concretely, if X = Shv(C), the ∞-category of sheaves of spaces on a small category

C with respect to a topology τ , then the n-th homotopy sheaf an object X ∈ Shv(C)

pointed at x : 1→ X is just the τ -sheafifcation of the presheaf

(2.8) T ∈ C 7→ π0 MapsShv(C)∗(Σ
n
+T , (X,x)).
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2.1.0.6. Suppose that C is a small category equipped with a topology τ . We shall denote

the homotopy sheaves of the ∞-topos Shvτ (C) in this case as

(2.9) πτn(X) := πShvτ (C)
n (X).

Suppose that X ∈ P(SmS) and consider the reflection LmotX onto H(S). Then the

A1-homotopy sheaves of X pointed at x : 1S → X is defined to be

(2.10) πA1
n (X,x) := x∗πNis

n (LmotX)

which is an object of the underlying topos ShvNis(S)
♥. There is also the sheaf of A1-

conencted components

(2.11) πA1
0 (X) := πNis

0 (LmotX).

Of course, if X ∈ H(S) then πA1
n (X,x) = πNis

n (X,x).

2.1.0.7. We adopt terminology in Morel’s book [54]. For 0 ≤ n ≤ ∞, we say that

X ∈ P(SmS) is A1-n-connected if the object LmotX, considered as an object of the ∞-

topos ShvNis(S), is n+ 1-connective in the sense of [48, Definition 6.5.1.10]. Concretely

this means that the A1-homotopy sheaves πA1
k (X,x) is isomorphic to the terminal object

in the discrete topos of Nisnevich sheaf of sets on SmS , for all base points and for k ≤ n.

2.1.0.8. The “Whitehead Theorem” in A1-homotopy theory is a consequence of the

hypercompleteness of the Nisnevich ∞-topos over certain bases. In this paper, we will

also have occasion to compute the homotopy groups sectionswise: if X ∈ P(C) and U ∈ C

then πn(X(U)) will be the unambigiously the homotopy groups of the space X(U).

Proposition 2.1.3. Let S be a quasicompact, locally Noetherian scheme of finite Krull

dimension. Then

(2.12) {πA1
n : H(S)→ ShvNis(S)

♥}n≥0

form a conservative family of functors.
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Proof. By definition the hypercompletion of an ∞-topos is a localization at ∞-

connective morphisms [48, Section 6.5.2], hence the claim follows by the hypercompleteness

of the∞-topos ShvNis(S) which is a consequence of the hypotheses in play by [50, Corollary

3.7.7.3]. �

In particular, we will later have occasion to work with the A1-homotopy sheaves of a

prestack.

2.1.0.9. One final notational remark: if X is a presheaf on a subcategory of schemes C

and Y ∈ C is affine, whence Y = Spec A we sometimes denote the section of X at Y to

be X(A). The context will always make it clear what we are doing.

2.2. E-motives

The environment in which the theorems below will take place is the ∞-category of

E-modules ModE(S) := ModE(SH(S)) where E ∈ CAlg(SH(S)), i.e., a motivic E∞-ring

spectra. This fits within the formalism of motivic module categories as explained by the

the author and Kolderup in an upcoming revision of [27] and reviewed in the Appendix B.

2.2.0.1. We summarize some key features of ModE(S) in the next proposition.

Proposition 2.2.1. Let S be a quasicompact, quasiseparated base scheme. Then

(1) The ∞-category ModE(S) is presentable and T-stable 2. In particular it is a

stable ∞-category and has invertible T-suspension functors

(2.13) {ΣqT : ModE(S)→ ModE(S)}q∈Z.

(2) The ∞-category ModE(S) is presentably symmetric monoidal and comes equipped

with a colimit-preserving functor symmetric monoidal functor

(2.14) ME : SH(S)→ ModE(S),

witnessing it as an SH(S)-algebra.
2See Definition B.0.23 for what this means.
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(3) ModE(S) is generated under sifted colimits by ΣqTME(Σ∞T X+) where X ∈ SmAffS
and q ∈ Z.

(4) The generators {ΣqTME(Σ∞T X+)} are compact.

(5) In particular the functors

(2.15) {Maps(ΣqTME(Σ∞T X+),−) : ModE(S)→ Spt}X∈AffSmS

form a conservative family of exact functors which preserves all small sums (and

hence all small colimits).

2.2.0.2. Given a base scheme S, we define the functor assigning a motivic space X to

ME(Σ∞T X+) ∈ ModE(S) by

(2.16) ME : H(S)→ ModE(S)

and we refer to the object ME(X) as the E-motive of X. We note, being a composite

of left adjoints, the functor (2.16) preserves all small colimits. If X ∈ P(AffS) is an

S-prestack, its E-motive is then ME(Ψ(X)). We will find the following notation useful for

any M ∈ ME(X)

(1) We write ΣqTM as M(q)[2q] and write the shift functor as (−)[1].

(2) Using the action of SH(S) on ModE(S) we have object Σ∞T (Gm, 1)∧q ⊗M for

any q ∈ Z. Denote this object by M(q)[q]. Using the usual Lmot-equivalence

(P1,∞) ' (Gm, 1) ∧ S1, this agrees with the previous notation.

Lastly, if 1 ∈ SH(S) is the sphere spectrum in SH(S), then we write ME(1) as

E ∈ ModE(S)

2.2.0.3. Now we need to work with E-motives of prestacks. The calculations of the

E-motives of prestacks in this thesis will boil down to understanding prestacks of the form

(2.17) F = colim
i∈I

Xi

where Xi are smooth k-schemes and I is a filtered diagram (often just N).
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In particular, we will compare prestacks presented as colimits of diagrams X,Y : I →

Schk and related via a transformation {ji : Xi → Yi} where ji is an open immersion whose

closed complement Zi is of codimension ci which tends to ∞. Such a situation has been

studied recently by Hoskins and Pepin-Lehalleur in [40]. We will work in a slightly more

general setting.

2.2.0.4. To begin we work with the base S = Spec k being a perfect field and write

ModE(k) instead of the unwieldy ModE(Spec k). We will also write the symmetric

monoidal unit of ME(k) as E instead of ME(Spec k). The point of working over a perfect

field is that every finitely generated field extension has a smooth model [65, Tag 030I]

hence we may perform stratification arguments (which we will see later).

2.2.0.5. We now introduce several conditions on ModE(k) (which we will later verify

for certain oriented theories):

(1) For every separated finite type k-scheme we may functorially associate to it its

motive ME(X)3 and its compactly supported motive Mc
E(X) in ModE(k). This

association comes equipped with a map

(2.18) ME(X)→ Mc
E(X).

When X is proper, the map (2.18) is an equivalence. In other words, we have

functors

(2.19) ME, Mc
E : Schft

k → ModE(k),

and a transformation

(2.20) ME ⇒ Mc
E,

which is an equivalence on the full subcategory of proper k-schemes.

3We can, of course, define ME(X) as ME(Ψ(X)). But, in examples of E, the latter object does not a
priori good behavior that the former object does — a prominent example is the localization triangle that
we will use later.
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(2) Suppose that Z ↪→ X is a closed immersion of codimension c where both X and

Z are smooth k-schemes and U ↪→ X is the open complement. We have a Gysin

triangle, which is the cofiber sequence in ME(k)

(2.21) ME(U)→ ME(X)→ ME(Z)(c)[2c].

We call the above sequence the Gysin sequence.

(3) For any smooth k-scheme X of dimension d we have a functorial equivalence

(2.22) Mc
E(X)(−d)[−2d] ' ME(X)∨.

Remark 2.2.2. We are thinking of ME(X) as a homological motive, so the map (2.20) is

dual to the more familiar map going from compactly supported cohomology to cohomology.

This latter map is given by p!p∗ → p∗p
∗.

Definition 2.2.3. We say that E ∈ CAlg(SH(k)) is an adequately oriented theory if

the assumptions (1)− (3) above hold.

2.2.0.6. In cases of interest, ModE(k) often has strong finiteness properties — at least

if the characteristic of k is invertible; see the author’s paper with Levine, Spitweck and

Østvær [25, Section 5.2] for more details.

Definition 2.2.4. We will say that ModE(k) has compact-rigid generation if the

following condition holds

• for any X ∈ SmAffk, the E-motive of X, ME(X), can be written as finite colimits

and retracts of ME(Y ) where Y is a smooth projective k-scheme.

In other words, if we write ModE(k)
proj as the subcategory of ModE(k) generated

under finite colimits and retracts of E-motives of smooth projective schemes, then the

condition asserts that any ME(X) where X is smooth affine is actually in ModE(k)
proj.

2.2.0.7. The compact-rigid generation of ModE(k) will allow us to find a more convenient

set of generators of ModE(k), which will be useful later.
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Proposition 2.2.5. Suppose that ModE(k) has compact-rigid generation, then the

∞-category ModE(k) is generated under filtered colimits by strongly dualizable objects

Proof. According to [25, Proposition 5.6], which is essentially a theorem of Riou [59],

we have inclusions

(2.23) ModE(k)
proj ⊂ Moddual

E (k) ⊂ ModE(k)
ω.

where Moddual
E (k) denote the full subcategory of ModE(k) spanned by the fully dualizable

objects and ModE(k)
ω the full subcategory of ModE(k) spanned by the compact objects.

By [25, Lemma 5.2] the last inclusion collapses into an equality whenever the unit is

compact and this is the case by Proposition 2.2.1.4 (see Proposition B.0.13 for a proof of

the general statement). To collapse the first inclusion, we use [25, Theorem 5.8] which

proves the desired claim for SH(k). Noting that the functor ME is symmetric monoidal

and preserves finite colimits by Proposition 2.2.1.2, we obtain the desired claim

�

2.2.0.8. We need one more condition on E to perform our calculations. This is one

instance where we need to work over a perfect field, over which Morel has constructed the

homotopy t-structure on SH(k) in [52]. To define the nonnegative part, we recall that if

E ∈ SH(k) then we have the Nisnevich sheaves πi(E)j on Smk defined by the Nisnevich

sheafification of the presheaf

(2.24) U 7→ π0 Maps(Σ∞T U+[i], E∧ (Gm, 1)∧j).

Remark 2.2.6. We note that this grading convention might be confusing in light of

the usual convention that Sp,q := (S1)∧p−q ∧ (Gm, 1)q, 4 but it is motivated by Morel’s

notion of a homotopy module or a “Ω-Gm-spectrum in strictly homotopy invariant sheaves”

(see [53]). We explain this notion briefly.

4This has been distressing to the author in the past
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For a fixed i, the collection {πi(E)j}j∈Z forms such a structure: the bonding maps in

the underlying Gm-spectrum of E defines maps

(2.25) πi(E)
∼=→ (πi(E)i+1)−1.

Where (−)−1 denote the contraction operator as explained in, for example, [51, Lecture

23]; this takes a presheaf of abelian groups on F : Smop
k → Ab to F−1 = Hom(Z(Gm),F ) :

Smop
k → Ab, its “Gm-loop space”. These homotopy modules form the heart of the

homotopy t-structure on SH(k) which we recall briefly below.

We define

(2.26) SH(k)≥0 := {E : πi(E)j = 0, i < 0, ∀j ∈ Z}.

This generates a t-structure (SH(k)≥0, SH(k)≤0) formally by [49, Proposition 1.4.4.11]

but Morel’s connectivity theorem identifies the non-positive part as

(2.27) SH(k)≤0 := {E : πi(E)j = 0, i > 0, ∀j ∈ Z}.

See [44, Section 2.1] for details. We note that the construction of the nonnegative part of

the t-structure does not require that we work over a perfect base field, but the identification

of the nonnegative part does because it replies on Morel’s stable connectivity theorem [53].

2.2.0.9. From now on we say that E is connective if it is t-connective with respect to

the above t-structure.

Proposition 2.2.7. Let k be a perfect field and suppose that E ∈ SH(k) is connective.

Then Ep,q(X) = 0 for p > q+ dim X. if

• if X ∈ Smk, or

• If X ∈ Schft
k and E has cdh-descent.

Proof. For τ = Nis or cdh, and X a smooth scheme in the first case or any finite

type scheme in the latter, we have the strongly convergent spectral sequence (due to the
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hypercompleteness of the large Nis and cdh-topoi and the finiteness of cohomological

dimension of smooth finite type schemes in each of these topologies; we use this latter fact

again below):

(2.28) Hs
Nis(X, π−t(E)q)⇒ [X, E[s+ t]⊗ (Gm)

∧q](= Es+t+q,q(X)5).

Since the Nisnevich and the cdh cohomological dimension is bounded about by the Krull

dimension ([46] and [68] respectively), we obtain the desired estimate. �

Remark 2.2.8. According to [15], if E is a Cartesian section of the Cartesian fibration

associated to the functor SH : Schop
S → Cat∞, for a Noetherian base S, then E has

cdh-descent. This includes the examples of all the motivic E∞-ring spectra that are of

interest — the motivic sphere spectrum, MGL, KGL and Spitzweck’s motivic cohomology

spectrum which is defined over Z [64].

2.2.0.10. Now suppose that E is connective and is an adequately oriented theory and

that ModE(k) has compact-rigid generation. We can prove the following key lemma

(compare [40, Proposition 2.13])

Lemma 2.2.9. Let k be a perfect field and suppose that X(−),Y(−) : N → Smk are

digrams of smooth schemes and j : X ⇒ Y is a transformation where for each i ∈ N

ji : Xi → Yi is an open immersion. Let Zi be the reduced complement of ji with codimension

ci and suppose that ci →∞ as i→∞. Then the map

(2.29) ME(colimXi)→ ME(colim Yi)

is an equivalence.

Proof. Write X := colimXi,Y := colim Yi. Since the ∞-category ModE is generated

by ME(T )(q)[p] where T ∈ Smk and q, p ∈ Z (Proposition 2.2.1) we need only check that,
5Beware the potentially confusing indexing conventions!



31

for a fixed q, p ∈ Z the map

(2.30) Hom(ME(T )(q)[p], MEX)→ Hom(ME(T )(q)[p], MEY )

is an isomorphism. Since MET is compact, we need only show that

(2.31) Hom(ME(T )(q)[p], MEXi)→ Hom(ME(T )(q)[p], MEYi)

is an equivalence for large enough i. For each i we have a cofiber sequence

(2.32) ME(Xi)→ ME(Yi)→ Ci.

One is tempted to say that Ci is exactly a shift of the motive of ME(Zi) but this is not

guaranteed to be the case because Zi is not a smooth k-scheme.

To get around this, let us first fix an i ∈ N and examine the closed subscheme Zi of Xi

which is assumed to be of codimension ci. Since k is perfect, we have a finite stratification

of Zi

(2.33) ∅ = W i
−1 ⊂ W i

0 ⊂ W i
1 ⊂ · · · ⊂ Zi

for which:

(1) For all j, the inclusion W i
j−1 ⊂ W i

j is a closed immersion of schemes.

(2) The open complement W i
j \W i

j−1 is smooth.

Therefore we have a cofiber sequence

(2.34) ME(W
i
j \Wj−1)→ ME(W

i
j )→ ME(W

i
j−1)(c

i
j)[2cij ],

whence the cofiber Ci can be expressed as successive extensions of shifts and suspensions

of smooth k-schemes where, most importantly, the shifts and suspensions are all of the

form (cij)[2cij ] where cij ≥ ci. Since these ci →∞ as i→∞, so does the cij ’s. Hence we
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may assume that Z ′is are smooth. In this situation we have the cofiber sequence

(2.35) ME(Xi)→ ME(Yi)→ ME(Z)(ci)[2ci],

and so we are reduced to proving the following vanishing statement: for a sequence of

integers ci →∞ we have that

(2.36) Hom(ME(T )(q)[p], ME(Z)(ci)[2ci]) = 0

for i� 0. Using duality and writing dZ := dim Z, we get that

Hom(ME(T )(q)[p], ME(Z)(ci)[2ci]) ∼= Hom(ME(T )⊗ (ME(Z))
∨, E(−q+ ci)[−p+ 2ci])

∼= Hom(ME(T )⊗Mc
E(Z)(−dZ)[−2dZ ], E(−q+ ci)[−p+ 2ci])

∼= Hom(ME(T )⊗Mc
E(Z), E(−q+ ci + dZ)[−p+ 2ci + 2dZ ]).

We make one last reduction: E has compact-rigid generation so we may assume that Z is

smooth and projective. In this case, we are reduced to proving that

(2.37) Hom(ME(T ×Z), E(−q+ ci + dZ)[−p+ 2ci + 2dZ ]) = 0.

This happens, according to Proposition 2.2.7, as soon as −p+ 2ci+ 2dZ − (−q+ ci+ dZ) >

dZ + dim,T . The left hand side is equal to −p+ q+ ci + dZ so we will have vanishing as

soon as

(2.38) − p+ q+ ci > dim T

which we can certainly arrange as ci →∞.

�

2.2.0.11. Examples of E. We will now produce examples of E which are amenable to

the above analysis. We first rapidly recall some notions from the six functor formalism

following the summary of [41, Section 2]. For our purposes we consider Schk the category
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of separated k-schemes of finite type. We have a functor

(2.39) SH : Schop
k → PrL,⊗

stab; f : X → Y 7→ f∗ : SH(Y )→ SH(X).

As the notation indicates the functor f∗ is symmetric monoidal so that, in particular,

f∗1Y ' 1X . The right adjoint is denoted by f∗ : SH(X)→ SH(Y ). Furthermore there is

the exceptional adjunction associated to f : X → Y whenever f is separated of finite type

(2.40) f! : SH(X)→ SH(Y ) : f !.

2.2.0.12. When f is smooth, f∗ further admits a left adjoint f#, characterized by the

property that whenever T → X is a smooth then f#(Σ∞T T+) ' Σ∞T T+ where T is regarded

as a smooth Y -scheme.

2.2.0.13. There is always a transformation

(2.41) f! → f∗

which is an equivalence whenever f is proper.

2.2.0.14. We freely use the following notation for Thom spectra of vector bundles (we

will soon switch to numbers instead of vector bundles in the presence of orientations).

Suppose that p : E → X is a vector bundle and s : X → E is the zero section, then we

have the invertible endofunctor (which is naturally a left adjoint)

(2.42) p#s∗ : SH(X)→ SH(X); M 7→ p#s∗M := ΣEM,

which has an inverse endofunctor (which is naturally a right adjoint)

(2.43) s!p∗ : SH(X)→ SH(X); M 7→ p#s∗M := Σ−EM.

In the event that f : X → Spec k is smooth, we have that f#p#s∗1X ' Σ∞T ThX(E) ∈

SH(k). The purpose of introducing these operations are the duality equivalences: if
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f : X → Spec k is smooth then we have canonical equivalences

(2.44) f! ' f#Σ−Ωf , f ! ' ΣΩf f∗.

where Ωf denote the sheaf of relative differentials or, more accurately, the associated

vector bundle, aka, the tangent bundle of X over Spec k.

2.2.0.15. Suppose that f : X → Spec k is the structure morphism, then the homological

motive of X is defined to be

(2.45) M(X) := f!f
!1k.

Indeed, whenever X is smooth we get that

(2.46) f!f
!1k ' f#Σ−ΩfΣΩf f∗1k ' f#1X = Σ∞T X+,

recovering the suspension spectrum of X. Indeed the assignment 2.45 easily assembles,

from the six functor formalism, into a functor

(2.47) Schk → SH(k),X 7→ M(X).

2.2.0.16. On the other hand, we define the compactly supported motive of X to be

(2.48) Mc(X) := f∗f
!1k,

which also assembles into a functor

(2.49) Schk → SH(k),X 7→ Mc(X).

The transformation in (2.41) then gives us the transformation (2.20)

(2.50) M(−)⇒ Mc(−)
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2.2.0.17. One of the key properties of the six functor formalism is the localization

sequence. We have a diagram in Schk

(2.51) Z
i
↪→ X

j
←↩ U

where i is a closed immersion and j is its open complement. Then

Theorem 2.2.10. [Morel-Voevodsky [55], Ayoub [3]; localization and purity] Given

a diagram as in (2.51) then we have the following cofiber sequences of endofunctors in

SH(X)

(2.52) j!j
! → id→ i∗i

∗

and

(2.53) i!i
! → id→ j∗j

∗.

Furthermore, if Z ↪→ X is a morphism of smooth k schemes, and Ni is the normal bundle

of the immersion i, the cofiber sequence in (2.53) reads as

(2.54) j!j
! → id→ Σi

∗Ni .

We remark that these localization sequences hold more generally than just for finite

type schemes over a field. Now, denote by f : X → Spec k the structure map. Then

applying the sequence 2.54 above to f !1k, then applying f! to the resulting sequence gives

us a cofiber sequence (since f! is an exact functor) in SH(k)

(2.55) f!j!j
!f !1→ f!f

!1k → f!Σi
∗Nif !1k,

which unwinds to a cofiber sequence in SH(k),

(2.56) M(U)→ M(X)→ M(ThZ(Ni)).
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where ThZ(Ni)) ∈ H(k) is the Thom space of the normal bundle of Z. To obtain (2.21),

we now need to discuss oriented motivic spectra.

Remark 2.2.11. The check that the sequence (2.56) is the stabilization of the purity

equivalence one obtains unstably in [55] is difficult but accomplished in [3]; a different

proof that the author can somewhat understand is found in the equivariant setting in

[42, Section 5.3].

2.2.0.18. Just as in topology, an orientation is, roughly, a coherent choice of trivial-

izations of the thom spaces of vector bundles and virtual bundles. Suppose that T is a

Smk-fibered premotivic category with the six functor formalism in the sense of [16, Chapter

1]; see [18, Definition A.1.1, Definition A.1.10] for a friendlier list of axioms. We remark

that while the original axiom presupposes that we work with triangulated categories, the

enhancements of these axioms to the ∞-categorical setting can be found in the thesis of

Khan [45]; we will work in this enriched setting without further comment but do not need

the coherence in any crucial way.

In particular T is a functor

(2.57) T : Schop
k → PrL,⊗

stab; f : X → Y 7→ f∗ : T(Y )→ T(X).

with the same kind of functorialities as SH discussed above — so there are functors

f!, f !, f#, f∗ which are appropriately adjoint and we can make sense of the Thom spectrum

of a vector bundle E → X, ΣE in this setting, as discussed in §2.2.0.14. We define the

T-motive and the T-compactly supported motive in the same way as in (2.45) and (2.48)

and denote them by MT(X) and Mc
T(X) respectively. If M ∈ T(Y ) we write M(d)[2d] to

be ΣAn
Y M; by A1-invariance this conforms to the conventions of §2.2.0.2.
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2.2.0.19. An orientation, in the sense of [16, Definition 2.4.38], is a natural equivalence

satisfiying properties spelled out in loc. cit.:

(2.58) tE : ΣE(−) '⇒ (−)(d)[2d].

We say that T is oriented if an orientation exists. Suppose that T is oriented and the

localization sequences in Theorem 2.2.10 holds in T (which will be true for all the examples

we consider), then the cofiber sequence (2.55) in T(k) reads as

(2.59) MT(U)→ MT(X)→ MT(Z)(d)[2d],

giving us the Gysin sequence in (2.21).

2.2.0.20. The last point is about duality. We need this along with the property that

T(k) has compact-rigid generation in the sense of Definition 2.2.4. So we ask that T(k)

satisfies:

• for any X ∈ SmAffk, the E-motive of X, MT(X), can be written as finite colimits

and retracts of MT(Y ) where Y is a smooth projective k-scheme.

Proposition 2.2.12. For any smooth k-scheme X of dimension d and T is oriented

has compact rigid generation and is equipped with a symmetric monoidal transformation

of Smk-fibered premotivic category with the six functor formalism SH(−)⇒ T(−). Then

we have a functorial equivalence:

(2.60) Mc
T(X) ' MT(X)∨(d)[2d].

Proof. Let p : X → Spec k be the structure morphism. First, we have functorial

equivalences
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Mc
T(X) = p∗p

!1k

' p∗ΣΩpp∗1k

' p∗p
∗1(d)[2d].

We have used the orientation in the last equivalence. Now it remains to show that p∗p∗ is

the strong dual to p!p
!. Using the fact that T(k) has compact-rigid generation and the

fact that duality and the strong dual is preserved under colimits in a symmetric monoidal

∞-category, we need only check this for X a smooth projective k-scheme. In this case, we

are reduced to [41, Section 3] where it is proved in SH(X) that the strong dual of

(2.61) p∗p
!1k ' p!p

!1k

is indeed

(2.62) p!p
∗1k ' p∗p

!1k.

�

2.2.0.21. Here is the first and most important example: given any base scheme S (such

as Spec Z) we have Voevodsky’s algebraic cobordism spectrum MGLS ∈ SH(S) (introduced

in [71]) defined as a colimit

(2.63) MGLS = colim Σ−2n
T Σ∞T ThGrn(γn)

where γn → Grn is the tautological n-plane over Grn, the smooth (ind-)scheme classifying

n-planes. Just like in topology MGL is the universal example of an oriented ring spectrum

— see [16, Definition 12.2.2] in terms of classes in P∞S and the resulting chern classes

and [16, Example 2.4.40] where it is shown that the resulting category of modules over

an oriented ring spectrum is oriented in the sense of §2.2.0.19. Indeed, Vezzosi proved
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(as phrased in [16, Theorem 12.2.10]) that there is a bijection between orientations of a

motivic ring spectrum E ∈ SH(S) and maps of ring spectra from MGL to E.

Proposition 2.2.13. Let k be a perfect field of characteristic p, then ModMGL(k)[
1
p ]

is an adequately oriented ring spectra, which has compact-rigid generation. Furthermore

MGLk[1
p ] is connective. In particular, the conclusion of Lemma 2.2.9 holds for E = MGL.

Proof. The compact-rigid generation of SH(k)[1
p ] is verified in [25, Theorem 5.9].

This implies the compact-rigid generation of ModMGL[
1
p ]. The discussions above show

that MGL[1
p ] is adequately oriented (not that this is not necessarily true before inverting

p because of reasons related to compact-rigid generation as seen in the proof of Proposi-

tion 2.2.12). The fact that MGL and hence MGL[1
p ] is connective is found in [44, Corollary

3.9].

�

From the universality of MGL we get:

Corollary 2.2.14. Let k be a perfect field of characteristic p, let E be an oriented

motivic E∞-ring spectrum in SH(k) which is furthermore connective, then the conclusion

of Lemma 2.2.9 holds for E.

Example 2.2.15. The conclusion of Lemma 2.2.9 then holds for KGL≥0, the connective

cover of algebraic K-theory, and MZ[1
p ], the motivic cohomology spectrum (which is the

case considered in [40]) by [44, Lemma 7.3]. Clearly the étale analogue of these spectra

also satisfy Lemma 2.2.9.
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CHAPTER 3

The space of generic maps

In this section we will study the motivic homotopy type of one model of the space of

rational maps which are christened in [8] as the space of generic maps. This model of the

space of rational maps has the advantage that it is can be studied in H(k), the unstable

motivic homotopy ∞-category. Working unstably lends ourselves to some “perturbative

methods” (or moving lemmas), and the main geometric input to our study of the space of

generic maps is Suslin’s generic equidimensionality Theorem (see Theorem 3.3.4). Roughly

speaking, this lemma allows us to move cycles Z ⊂ X ×∆n, where X is an affine k-scheme,

to one where the map Z → ∆n has equidimensional fibers. We will use this to move the

locus of singularity of a rational map.

3.1. The category of domains

To begin let us recall some standard notions in algebraic geometry. Suppose that S is

a base scheme and X an S-scheme, and p : X → S is the canonical morphism.

Definition 3.1.1. An open subscheme U ⊂ X is S-universally dense if for any

morphism T → S, the open subset U ×S T ⊂ X ×S T remains dense.

If the base scheme S is clear, we sometimes say that U is universally dense.

3.1.0.1. The space of generic maps from X to Y naturally lives over a certain category

parametrizing universally dense open subsets of X. For a while we will be able to work

under the generality that X is an arbitrary scheme, in which case the prestacks involved

are all simply objects of P(Aff).
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Definition 3.1.2. The category DomX has as objects (S,U) where U ⊂ XS is

universally dense. We call objects in DomX a domain of X. A morphism in this category,

displayed as (S,U)→ (T ,V ), is a map q : S → T of affine schemes such that the diagram

(3.1) V ⊂ XT

��

// U ⊂ XS

��

S
q

// T .

commutes (but not necessarily Cartesian).

The following is easy to check

Lemma 3.1.3. The functor q : DomX → Aff (S,U) 7→ S is a Cartesian fibration.

Proof. Follows from the requirement that U ⊂ XS is universally dense so that q-

Cartesian lifts exist. �

We will have occasion to work with the straightening DomX : Affop → Set.

3.1.0.2. A universally dense subscheme of XS is a generalization of the notion of (the

complement) of a relative effective Cartier divisor. To motivate this notion, suppose that

we have a morphism f : X → S and D ⊂ X an effective Cartier divisor 1 and p : T → S

is a morphism of schemes. We would like conditions for the pullback of schemes D×S T

to be also be an effective Cartier divisor of XT . This is assured if OXS/L is S-flat (iff

the morphism D → S is flat) [65, Tag 056P].

Definition 3.1.4. Suppose that f : X → S is a morphism of schemes. A relative

effective divisor on X/S is an effective Cartier divisor D ⊂ X such that the morphism

D → S is a flat morphism of schemes (iff the coherent sheaf OX/L is S-flat). Given an

effective Cartier divisor D ⊂ X the divisor complement of D is the open subscheme of X

which is the complement of D (equivalently, the complement of the support of OX/L ).
1Recall that this is equivalent to the data of an invertible sheaf L equipped with a monomorphism of
coherent sheaves i : L ↪→ OXS

; D is then obtained as the support of the sheaf cokernel OXS
/L .
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3.1.0.3. Indeed, a class of examples of universally dense subschemes are given by com-

plements of these relative effective divisors. First, we observe that S-universally dense

open subschemes of X are simply those whose fibers over closed points of S are dense.

Lemma 3.1.5. A universally dense subscheme can be tested on closed points: if

p : X → S is morphism of schemes, then an open subset U ⊂ X is universally dense if

and only for all closed points {s} ↪→ S the scheme U ×S {s} is nonempty.

Proof. One implication is trivial. Let p : T → S be a morphism of schemes and

suppose that V ⊂ XT is a nonempty open subset. If UT is not dense then UT ∩ V must be

empty. Since V is nonempty we may pick a point v ∈ V which maps to some point t ∈ T

with closure t̄ ∈ T then we get that p(t̄)×S U must be empty, which is a contradiction. �

Proposition 3.1.6. Let X → S be a morphism of schemes, and consider an effective

Cartier divisor defined by a monomorphism i : L → OXS where L is an invertible sheaf.

Then the sheaf OXS/L is S-flat if and only if the complement of the support of OXS/L

is universally dense.

Proof. This is implied by [8, Lemma 3.2.8]. By Lemma 3.1.5, being universally dense

is the same as saying that for any closed point {s} ↪→ S the pullback U ×S {s} 6= ∅, while

a coherent sheaf F being S-flat is the same as saying Tor1(F , Is) = 0 for any Is ⊂ O a

sheaf of ideals on S corresponding to the closed point s.

Hence, U ×S {s} is nonzero if and only if O/Ls vanishes if and only if Ls ↪→ Os is an

injection of vector bundles on X ×S {s} if and only if Tor1(Os/Ls, Is) = 0 if and only if

Os/Ls is flat as a coherent sheaf on X.

�

3.1.0.4. As indicated by Proposition 3.1.6 a way to construct objects in DomX is via

relative effective divisors on XS . We see that this can always be arranged Zariski-locally.

Proposition 3.1.7. Let f : X → S be a quasiprojective morphism of schemes, and

suppose that U ⊂ X is a universally dense open subscheme of X. Then there exist a
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Zariski-cover of S, S̃ → S such that the dense open subscheme U ×S S̃ ⊂ X ×S S̃ is the

complement of an effective Cartier divisor on X ×S S̃.

Proof. Since f : X → S is quasiprojective, there exists an f -relatively ample invertible

sheaf on X, L with sections s1, · · · , sn for which the non-vanishing loci of these sections

are open subsets that cover X. Denote by Xsi the open subset correspond to si. Hence we

may take the intersections Usi := U ∩Xsi and Usi ⊂ X are divisor complements. Define

Si ⊂ S to be the open subscheme of S which is the image of Usi ⊂ X → S; note that

Usi ⊂ X ×S Si is Si-universally dense. Then S̃ =
∐
Si is the desired Zariski cover of

S. �

3.1.0.5. We can endow DomX with Grothendieck topologies. Suppose that τ is a

topology on Aff then we consider the Grothendieck topology on DomX defined in the

following way:

• A collection {(Sα,Uα) → (T ,V )} is a τ -sieve if and only if the {Sα → T} is a

τ -sieve.

Now consider the functor q∗ : P(Aff) → P(DomX),Y 7→ Y ◦ q. Given a topology τ

on Aff, the definition of the induced topology on DomX ensures that if Y is a τ -sheaf on

P(Aff), then q∗Y is also a τ -sheaf on DomX . As a result we have a commutative diagram

(3.2) Pτ (Aff)

��

q∗
// Pτ (DomX)

��

P(Aff)
q∗
// P(DomX)

where the vertical arrows are fully faithful embeddings. Taking the left adjoints (which

exists by the adjoint functor theorem), we obtain
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Proposition 3.1.8. The functor q∗ : P(Aff) → P(DomX),Y 7→ Y ◦ q admits a left

adjoint q! : P(DomX)→ P(Aff) such that the diagram

(3.3) P(DomX)

Lτ
��

q!
// P(Aff)

Lτ
��

Pτ (DomX)
q!
// Pτ (Aff)

commutes. Furthermore the functors q! are both localizations.

3.1.0.6. According to [8] a generic moduli problem is an object Y ∈ P(DomX). Since

the functor q∗ : P(Aff)→ P(DomX) is fully faithful [8, Page 7], we may also regard q!Y

as prestack and we are safe in not making a distinction between generic moduli problems

as an object of P(DomX) and P(Aff).

3.2. Space of generic maps

We now define the space of generic maps associated to a scheme X and a presheaf

Y ∈ P(Sch). When Y is a scheme this is written down by hand in [8, Example 2.3.3].

First, we have a functor

(3.4) o : DomX → Sch, (S,U) 7→ U ,

picking out the universally dense open subset of XS . We will need this functor to define

maps which are regular only on U .

Construction 3.2.1. Let X be a scheme and let Y ∈ P(Sch) be a presheaf. We

define the presheaf

(3.5) GenMaps(X,Y )DomX
: Domop

X → Spc

as the straightening of the Cartesian fibration GenMaps(X,Y )DomX
→ DomX defined via

the pullback
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(3.6) GenMaps(X,Y )DomX

��

// Sch//Y

��

DomX
o

// Sch .

The space of generic maps between X and Y is then defined as

(3.7) GenMaps(X,Y ) := q!GenMaps(X,Y )DomX
: Affop → Spc.

3.2.0.1. We note that GenMaps(X,Y )DomX
((T ,U)) is the space classifying spans

(3.8) U
j

||

f

  

X × T Y ,

where the left leg j is a universally dense open immersion and f is allowed to be any

morphism from U to Y . Upon Kan extension, prestack q!GenMaps(X,Y ) classifies spans

such as (3.8) where we identify maps that agree on smaller and smaller open subsets.

More precisely, we will display the formula for this left Kan extension. Let T ∈ Aff,

then we have the pullback (DomX)T := DomX ×Aff {T}. Suppose that we have a presheaf

(3.9) F : Domop
X → Spc,

then we have that

(3.10) q!F (T ) ' colim((DomX)
op
T ↪→ Domop

X → Spc));

see [8, Page 7].

3.2.0.2. Here is an example of GenMaps that has a very concrete interpretation, especially

on the level of k-points.
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Example 3.2.2. [The space of rational functions] Recall the following terminology:

if S is a base scheme and p : X → S is an S-scheme and Y is another scheme, then an

explicit S-rational function is a span

(3.11) U
j

��

f

  

X A1,

where U is a S-universally dense subscheme of X. An S-rational function is then an

equivalence class of explicit S-rational functions where we take the equivalence relation

generated by two explicit S-rational functions agreeing on a smaller universally dense

subset. In other words, the set GenMaps(X, A1)(S) classifies S-rational functions on XS .

Suppose now that X is an S-scheme where S is the spectrum of the base field, then the

k-points

(3.12) GenMaps(X, A1)(k) = colim
U⊂U ′

{X ←↩ U → A1}.

naturally identifies with the vector space k(X) of rational functions on X.

Before proceeding further, we will need to understand some “invariant” behavior of

GenMaps better.

3.2.0.3. Suppose that U ⊂ X is a dense open subset of X. We would expect that

GenMaps(U ,Y ) and GenMaps(X,Y ) to be equivalent as prestacks. Indeed, there is

a functor DomU → DomX because a universally dense subset of U is automatically a

universally dense subset of X.

Proposition 3.2.3. Suppose that U ⊂ X is dense open immersion of schemes, then

the functor DomU → DomX induces an equivalence of prestacks GenMaps(U ,Y ) →

GenMaps(X,Y ).
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Proof. It suffices to check that for all T ∈ Aff, the map of sets

(3.13)

colim
(T ′,V )∈(DomU )T

GenMaps(U ,Y )DomU
(T ′,V )→ colim

(T ′,V )∈(DomX )T
GenMaps(U ,Y )DomU

(T ′,V )

is an isomorphism. But this follows from the fact that (DomU )T ↪→ (DomX)T is a cofinal

inclusion. �

3.2.0.4. Next, we ask about descent properties of the prestack GenMaps(X,Y ). The

following proposition captures the descent properties of the space of generic maps

Proposition 3.2.4. Suppose that Y is an fppf (resp. fpqc) sheaf, then GenMaps(X,Y ) :

Affop → Spc is also an fppf (resp. fpqc) sheaf.

Proof. Since Y satisfies fppf (resp. fpqc) descent, we need only check that universally

dense opens satisfy fppf (resp. fpcq) descent. To do so we use Proposition 3.1.5 character-

izing universally dense opens. Indeed, let T → S be an fppf (resp. fpqc) cover (in fact

the argument works so long as the map is surjective on closed points) and suppose that

UT is universally dense in X × T . Let {s} ↪→ S be a closed point, then {s} ×S T ↪→ T

is a closed subset. Since UT is universally dense, for any closed point {t} ↪→ {s} ×S T ,

UT ×T {t} is nonempty and thus U ×S {s} is nonempty. �

As a special case, if Y is representable by a scheme, then GenMaps(X,Y ) has fppf

and fpqc descent.

3.2.0.5. We will also need to understand closed gluing in GenMaps. We will quickly

review this notion since it might be less familiar to the reader but see the discussion in

[26, Appendix A.2].
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Definition 3.2.5. Suppose that C is an ∞-category with finite limits. A functor

F : Schop → C satisfies closed gluing if it takes a pushout diagram in Sch

(3.14) D
i

//

i′

��

Z ′

��

Z // Z
∐
D Z

′ = X,

where i,′ i′ are closed immersions to a Cartesian square

(3.15) F (X) //

��

F (Z ′)

��

F (Z) // F (C),

Remark 3.2.6. According to [29] the maps Z → X,Z ′ → X in (3.16) are also closed

immersions.

Example 3.2.7. [Closed gluing and Milnor patching] In the affine case the square (3.16)

is usually called a Milnor square which is a commutative square of rings

(3.16) A //

f
��

A/I

��

B // B/I,

where the map f maps the ideal I of A isomorphically onto an ideal of B which we also

call I; the closed gluing condition is often also called Milnor patching. A functor that

satisfies Milnor patching (and hence closed gluing since it also has Zariski descent) is given

by Vect : Schop → Spc, the stack of finite dimensional vector bundles. A very general

version of this statement can be found in [50, Theorem 16.2.0.1].

We further remark that, in general, algebraic K-theory does not satisfy Milnor patching

unless the multiplication map B ⊗A B → B is an isomorphism. This is equivalent to the
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notion of Tor-unitality of Suslin and Wodzicki [67]; while the modern formulation is given

by Tamme in [69].

3.2.0.6. A consequence of closed gluing is the following simple but useful lemma about

detecting LA1-equivalences. We recall that there is a closed immersion of affine schemes

(3.17) in : ∂∆nZ ⊂ ∆nZ.

Lemma 3.2.8. Let f : F → G be a map in P(Aff) such that F and G have closed

gluing. Suppose that the following condition holds of f :

• for every S ∈ Aff and every n ≥ 0, the map induced map

(3.18) F ∂∆n ×G∂∆n G∆n ← F∆n ,

is an epimorphism in Spc.

Then f is an LA1-equivalence.

Proof. By the discussions in Proposition B.0.3, LA1 is calculated using the Suslin

construction. Hence f is a LA1-equivalence if and only if the geometric realization of the

map of simplicial objects in the ∞-topos P(Aff)

(3.19) |SingA1
f | : |SingA1

F | → |SingA1
G|,

is an equivalence. Since P(Aff) is a hypercomplete ∞-topos, |SingA1
f | is an equivalence

if and only it is ∞-connective.

Now, suppose that the condition holds. According to [50, Theorem A.5.3.1], if the

map of simplicial objects SingA1
f is a trivial Kan fibration [50, Definition A.5.2.1] then,

|SingA1
f | is ∞-connective so we need to verify that the map (3.18) being an epimorphism

implies that SingA1
f is a trivial Kan fibration. The affine scheme ∂∆n is the pushout of

affine schemes ∆n−1 ∐
∆n−2 ∆n−1 ∐

∆n−2 · · ·∆n−1 and since F has closed gluing we have an
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equivalence

(3.20) SingA1
F ∂∆n(−) ' (SingA1

F (−))∂∆n ;

and similarly for SingA1
G and we are done.

�

3.2.0.7. The next proposition helps us access the motivic homotopy type of GenMaps(X,Y ).

Proposition 3.2.9. Suppose that Y satisfies closed gluing, then so does GenMaps(X,Y ).

Proof. Since Y has closed gluing, it suffices to check that dense open immersions

have closed gluing. To do so we begin with an affine scheme T = T0
∐
T01 T1 where

T01 ↪→ Ti, i = 0, 1 are closed immersions. Then X × T0
∐
T01 T1 ' XT0

∐
XT01

XT1 by

universality of colimits. By [29, Lemma 4.4] any flat morphism U → X × T0
∐
T01 T1

decomposes as U0
∐
U01 U1 where U∗ = U ×X XT∗ where ∗ = 0, 1, 01. Moreoever, each U∗

is universally dense in XT∗ by the universally dense assumption on U .

�

3.2.0.8. One of the technical advantages of the model of generic maps as rational maps

is the following “descent on the target statement” proved by Barlev in [8].

Proposition 3.2.10. Suppose X is an scheme, then the functor

(3.21) GenMaps(X,−) : Sch→ Set ⊂ Spc

is a Zariski cosheaf.

Proof. This is essentially [8, Lemma 6.2.5]. We give a slightly different formulation of

the proof. Recall that the Zariski topology is generated by a cd-structure (in the sense of
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[75]; see also the formulation in [2, Section 2]) where the squares are Cartesian squares

(3.22) U ∩ V

��

// V

��

U // Y

such that the maps V ,U → Y are open immersions and U ∪ V = X. Hence, being a

Zariski cosheaf just means that the square (3.22) gets taken to a pushout under application

of GenMaps(X,−)

(3.23) GenMaps(X,U ∩ V )

��

// GenMaps(X,V )

��

GenMaps(X,U) // GenMaps(X,Y )

.

To see that (3.23) is a pushout, we first note that the vertical maps in (3.23) are monomor-

phisms of simplicial sets and are thus cofibrations. Hence the pushout can be checked

in the category of sets. In this case, suppose that we have a T -point in GenMaps(X,Y )

presented by a (U ′ ⊂ XT , f : U ′ → Y ). Then for W = U ,V or U ∩ V consider the open

subschemes U ′ ∩ (XT ×Y W ) ⊂ XT . These open subschemes are universally dense open

subsets (which can be checked on closed points by Lemma 3.1.5) of XT . On these domains

we have map f |U ′∩(XT×YW ) : U ′ ∩ (XT ×Y W ) → Y which glues to the original map f .

This verifies that the diagram (3.23) is indeed a pushout in the category of sets.

�

Remark 3.2.11. Since the ∞-topos of Zariski sheaves is hypercomplete, we conclude

that GenMaps(X,−) is a hypercosheaf : if Y• → Y is a Zariski hypercover, then the

canonical map

(3.24) colim
∆op

GenMaps(X,Y•)→ GenMaps(X,Y )

in P(Aff) is an LZar-equivalence.
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3.3. The motivic homotopy type of generic maps

We will now work over a base field k. We will now consider Example 3.2.2 from

the point of view of motivic homotopy theory. In particular, we want to prove that

GenMaps(X, A1) is indeed LA1-equivalent to the point whenever X is irreducible. We

begin with some elementary extension lemmas.

3.3.0.1. We are now ready to prove our first contractibility statement

Proposition 3.3.1. Suppose that X is a k-scheme, then the map SingA1
GenMaps(X, Ad)→

SingA1
Spec k is a trivial Kan fibration in P(Affk).

Proof. The claim is that for any T ∈ Affk, we have a solution to the following lifting

problem

(3.25) ∂∆nT

��

g
// GenMaps(X, Ad)

��

∆nT //

g̃

99

Spec k.

Since GenMaps(X, Ad) (by Proposition 3.2.9) and Spec k both have closed descent, it

suffices to prove that the map

(3.26) GenMaps(X, Ad)(∂∆nS)← GenMaps(X, Ad)(∆nS),

is an epimorphism.

Concretely, we have the following situation: the map g classifies rational maps

(g0
1, · · · , g0

d) on X × ∂∆n × T such that each gi is defined on a universally dense open

U0
i ⊂ X × ∂∆n × T :

(3.27) gi : U0
i → A1.
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Using Lemma 3.3.2 below, we may extend the functions g0
i to gi defined on universally

dense opens Ui ⊂ X × ∆n × T which defines the desired lift in (3.25).

�

Lemma 3.3.2. Let S0 ⊂ S be a closed immersion of finite presentation and Suppose

that X is an S-scheme. Given an S0-rational function f0 (Example 3.2.2) on XS0 , we can

extend it to an S-rational function f on XS .

Proof. Let U0 ⊂ XS0 be the domain of definition of f0 so that U0 ⊂ XS0 is universally

dense. First we choose U ⊂ XS a universally dense open subset of X which restricts to

U0, i.e., U ×S S0 = US0 . In this case, U0 → U is a closed immersion. Furthermore by

shrinking U0 and thus U we may assume that U0 = Spec A/I ⊂ U = Spec A is affine.

In this case, we can just extend f0 defined on U0 to the U by choosing any lift in the

following diagram (which exists since Z[x] is free and A→ A/I is epi).

(3.28) A

��

Z[x]

<<

// A/I

�

3.3.0.2. Lemma 3.2.8 then tells us

Proposition 3.3.3. Suppose that X is a k-scheme and d ≥ 0, then the canonical map

(3.29) Ψ(GenMaps(X, Ad))→ Spec k

is an Lmot-equivalence.

3.3.0.3. Now we want to improve the contractibility result in Proposition 3.3.3 to

open subsets of An at least when the domain is a curve. Using the codescent result in

Proposition 3.2.10, we can then boostrap the contractibility result to include schemes

which can be covered using open subsets of An. To do this, we will use the following
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moving lemma due to Suslin [66]. This is where we have to restrict to the base field and

thus we work with k-prestacks, P(Affk) and the functor Ψ : P(Affk)→ H(k).

3.3.0.4. The heart of our argument uses the following “moving lemma” due to Suslin.

Theorem 3.3.4. [Suslin] Let S be an affine scheme of finite type over a field k, and

suppose that we are given the following data

(1) V ⊂ S ×An a closed subscheme.

(2) Z an effective divisor of An.

(3) φ : S ×Z → S ×An a map over S.

(4) t ≥ 0 such that dim V ≤ n+ t.

Then there exists an filler

(3.30) S ×An Φ
// S ×An

S ×Z

OO

φ

99

such that the map

(3.31) Φ |An\Z : Φ−1(V ) |An\Z→ An \Z

is dimension ≤ t.

Remark 3.3.5. Theorem 3.3.4 was proved in [66] as the main technical ingredient

to proving that, for high enough degree, Bloch’s higher Chow groups agree with étale

cohomology; more precisely if i ≥ dim X and X is a smooth scheme over an algebraically

closed field of characteristic zero then

(3.32) CHi(X,n, Z/m) ' H2(d−i)+n
ét (X, Z/m(d− i)).

This theorem is now a special case of the Beilinson-Lichtenbaum conjecture as proved by

Voevodsky. Suslin’s generic equidimensionality theorem is also used in [51] to prove a

comparison theorem betweem Bloch’s higher Chow groups and motivic cohomology (as



55

defined via the mapping spaces in DM). In particular, it is used as a “moving lemma” to

prove that Bloch’s complex as defined in [11] and Friedlander-Suslin’s equidimensional

cycles [30] are quasiisomorphic, i.e., one can perturb any cycle that intersects X ×

∆n properly (see [51, Definition 17A.1]) to one that is also equidimensional over ∆n.

This geometric picture was what prompted the author of the present to investigate the

connections with the contractibility of rational maps.

3.3.0.5. We now come to the main theorem about the space of generic maps. We fix a

connected curve C (possibly not smooth and possibly open) over a field k.

Proposition 3.3.6. Suppose that Y is representable by an open subset of affine space

and suppose that C is a k-curve. The map SingA1
GenMaps(C,Y )→ SingA1

Spec k is a

trivial Kan fibration of simplicial objects in P(Affk).

Proof. Using Proposition 3.2.3, we may assume that C is an affine curve. Since Y is

representable by an open subset of An, we fix the open immersion of schemes Y ⊂ An.

The claim is that for any T ∈ Affk, we have a solution to the following lifting problem

(3.33) ∂∆nT

��

g
// GenMaps(C,Y )

��

∆nT //

g̃

::

Spec k.

Now, since GenMaps(C,Y ) has closed gluing (by Proposition 3.2.9), the map g classifies

a rational map displayed as a span

(3.34) U
j

yy

g

$$

C × ∂∆n × T Y ⊂ An,
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where j is a universally dense open immersion; we let D be a complement of U . The goal

is to extend the span in (3.34) in the following way:

(3.35) U
j

xx

g

$$

��

C × ∂∆n × T

��

Y ⊂ An

=

��

W
j′

xx

g̃

$$

C × ∆n × T Y ⊂ An,

where j′ is again a universally dense open immersion. To do so, we first extend the map g

to a diagram

(3.36) U

xx ��

g
// Y // An

C × ∂∆n × T

��

U ′

yy

g̃′

77

C × ∆n × T

using Lemma 3.3.2. Choose a closed complement Z ⊂ An to Y (any scheme structure)

so that we have a closed immersion g̃′−1(Z) ⊂ X × ∆n × T . We would like to define U ′

as the open complement of the closed subschemes g̃′−1(Z) and D. However, the problem

is that U ′ might not be generically open. What could happen is that at some point

(v, t) ∈ ∆n \ ∂∆n × T , the inclusion g̃′−1(Z)(v,t) ⊂ C(v,t) is not proper and hence the

complement of g̃′−1(Z) ∪D at this point is empty.

To get around this problem, we apply Suslin’s Theorem 3.3.4. First notice that since

g misses Z, the extension g̃ misses points of Z as well hence the inclusion g̃−1(Z) ⊂
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C ×An × T is a proper closed subset. Therefore, the dimension of g̃−1(Z) is < dim C +

n+ dim T = 1 + n+ dim T and so

(3.37) dim g̃−1(Z) ≤ n+ dim T .

Now, we apply Suslin’s Theorem 3.3.4 using the following hypotheses:

(1) S is the affine scheme C × T (remember that we assumed C is an affine curve),

(2) g̃′−1(Z) ⊂ C ×An × T the closed subscheme,

(3) ∂∆n the effective divisor of An and φ is the canonical closed immersion i : ∂∆n ↪→

∆n and,

(4) t is dim T so that dim g̃−1(V ) ≤ n+ t.

The thesis of Theorem 3.3.4 is that there is a map Φ : C ×∆n×T → C ×∆n×T such that

Φ−1(g̃′−1(Z)) is of dimension ≤ t at every point ∆n \ ∂∆n. Furthermore, since Φ agrees

with closed immersion i and g̃−1(Z)∩ ∂∆n = ∅ we also note that Φ−1(g̃−1(V ))∩ ∂∆n = ∅.

From this we first conclude that at every point s ∈ ∆n \ ∂∆n we have a closed immersion

over T

(3.38) Φ−1(g̃−1(V ))s ↪→ C × T × {s}.

where the Φ−1(g̃−1(V ))s is of dimension ≤ t and C × T × {s} is of dimension = t+ 1,

hence we have a closed immersion of codimension at least2 1. In other words, the map

Φ−1(g̃′−1(Z))s → T is equidimensional of relative dimension zero and is thus quasi-finite.

We claim that at every closed point t ∈ T , the inclusion of fibers Φ−1(g̃′−1(Z))s×T {t} ↪→

C× {t} × {s} is proper 3. Since C is a curve it thus suffices to prove that the map

Φ−1(g̃′−1(Z))s → T is, in fact, finite 4.

2Without Suslin’s Theorem, the codimension could be zero!
3In the sense that the inclusion is not an equality; not the sense that the morphism is proper (which of
course it is because we have a closed immersion).
4So, proper in the sense of a morphism being proper!
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To do so, since GenMaps(X,Y ) is a Nisnevich sheaf by Lemma 3.2.4, we may assume

that T is a Henselian local ring of dimension t (we could have assumed so at the beginning

of the proof). Since Φ−1(g̃′−1(Z))s ⊂ C×T ×{s} is nonempty and closed, the intersection

of Φ−1(g̃′−1(Z))s with a {c}× T for some closed point c is a closed subset of T and must

thus intersect with the closed point of T , hence the map Φ−1(g̃′−1(Z))s → T hits the

closed point of T . According to [56, Chapter 1, Theorem 4.2], we may conclude that

Φ−1(g̃′−1(Z))s → T is indeed finite as desired.

Hence at every closed point (s, t) ∈ ∆n× T , we deduce that the fiber (Φ−1(g̃′−1(Z))∪

D)(s,t) is a proper subset of C(s,t) (D(s,t) is already a proper subset by the starting

universally dense assumption on U ⊂ C × ∂∆n × T ) and hence the complement of

Φ−1(g̃′−1(Z)) ∪ D is generically dense since the fiber at every closed point (s, t) of

∆n× T is the complement of a closed, proper subset of C. We set this to be W . By design,

map g̃ ◦Φ restricted to V misses Z and thus we are done. �

Remark 3.3.7. The hypothesis that C is a curve is used in the estimate (3.37). If C

was a k > 1-dimensional scheme instead, then dim g̃−1(V ) ≤ n+ dim T + k− 1, in which

case we will not have the control over the dimension of Φ−1(g̃−1(V )) over ∆n \ ∂∆n as

produced by Suslin’s theorem as applied in the subsequent analysis.

3.3.0.6. We now obtain

Theorem 3.3.8. Suppose that Y is a a connected, separated scheme which has a

Zariski cover {Uα} where Uα is a dense open subset of Anα and suppose that C is a

k-curve. The map GenMaps(C,Y )→ Spec k is an Lmot-equivalence.

Proof. Let U :=
∐
Uα. Since the Nisnevich topology is finer than the Zariski topology,

Remark 3.2.11 tells us that the map

(3.39) colim
∆op

GenMaps(X, ČY (U))→ GenMaps(X,Y )
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is an Lmot-equivalences whence it suffices to check that the colim∆op GenMaps(X, ČY (U))

is contractible. By the assumption on U ′αs and using Proposition 3.2.10 to see that

GenMaps(X,−) preserves coproduct decomposition of schemes, we conclude the Theorem

using Proposition 3.3.6, the fact that trivial Kan fibrations are∞-connective [50, Theorem

A.5.3.1] and Proposition 2.1.3.

�
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CHAPTER 4

The space of rational maps

We now deduce the contractibility of another version of the space of rational maps

using techniques which are closer in spirit to [31], [32]; we denote this space of rational

maps as RatMaps.

Let us explain the main idea, following [32, Example 3.3.3]. The set-up is as follows:

we have a smooth complete curve C over a field k and U ⊂ An an open dense subscheme

of affine space. We have an equivalence RatMaps(C, An) ' RatMaps(C, A1)×n so

contractibility of this space is implied by the contractibility of RatMaps(C, A1). This

later gadget is an “algebro-geometric incarnation” of the function field of the curve k(C)

which can be thought of as an infinite-dimensional k-vector space and hence this object

should be A1-contractible. The sub-prestack RatMaps(C,U) ⊂ RatMaps(C, An) then

has a complement which is, roughly, RatMaps(C,Z) where Z ⊂ An is some complement

of U . This prestack is then of infinite codimension inside RatMaps(C, An) and hence have

equivalent homology.

This last point is not a condition that can be meaningfully expressed in the unstable

motivic homotopy category H(k). However, in Voevodsky’s category of motives DM(k),

and more generally in the category of modules over oriented motivic ring spectra [20], we

have Gysin triangles

(4.1) M(X \Z)→ M(X)→ M(Z)(c)[2c]

where c is the codimension of Z in X and Z ↪→ X is a closed immersion of smooth

k-schemes. We see that M(X \ Z) → M(X) becomes “increasingly more and more
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equivalent” as we let c→∞ and the object M(Z)(c)[2c] becomes more “connective.” This

was formalized in our discussions in §2.2. More precisely in Lemma 2.2.9.

We also remark that this version of the rational maps is the one used to approximate

BunG(C) using the Beilinson-Drinfeld Grassmanian. In particular it appears (fppf-locally)

as the fiber of the “uniformization map” approx : GrG(C) → BunG(C) [32], [31]. The

motivic consequences of our results to BunG(C) will be explored in a sequel to this thesis.

4.1. The Ran space and its variants

Let us recall the following prestack.

Definition 4.1.1. Let X ∈ Sch be separated. The Ran space of X is the prestack

(4.2)

Ran(X) : Affop → Set ⊂ Spc,T 7→ {I ⊂ X(T ) : I is a finite non-empty set of X(T )}.

4.1.0.1. The next proposition summarizes the basic nature of of Ran(X). We recall that

an ind-scheme (sometimes called a strict ind-scheme) is a formal filtered colimit of schemes

(4.3) colim
I

Xi ∈ P(Aff)

where the transition maps Xi → Xj are closed immersions; these form a category Ind Sch

which is a full subcategory of prestacks. According to [31] a pseudo ind-scheme is a

prestack X ∈ P(Aff) which can be written as

(4.4) colim
I

Xi ∈ P(Aff)

where I is a small diagram and X is a functor X : I → Ind Sch subject to the condition

• Each transition map Xi → Xj is ind-proper (see [31, 2.1.5] for this terminology

and its cousins).

The prestack Ran(X) is a pseudo ind-scheme. The diagram that presents Ran(X) is the

(opposite category) of finite sets and surjections Finsurj where the objects are finite sets

and the morphisms are surjective maps.
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Proposition 4.1.2. Suppose that X ∈ Sch is separated, then Ran(X) is a pseudo

ind-scheme. More precisely, Ran(X) is the colimit in P(Aff)

(4.5) colim
I∈Finsurj,op

XI .

Proof. This is well-known, but a proof can be found in [8, Appendix B]. The basic

idea is as follows: since colimits are taken pointwise in P(Aff), we get that

(4.6) ( colim
I∈Finsurj,op

XI)(S) ' colim
I∈Finsurj,op

Hom(S,X)I .

where Hom above is the set of scheme maps from S to X. Now, in general

(4.7) colim
I∈Finsurj,op

AI ,

where A is a set, computes the set of non-empty finite subsets of A. The point of the

argument in [8, Appendix B] is to show that the resulting colimit is still discrete.

�

Remark 4.1.3. As remarked in [32, Warning 2.4.4], Ran(X) does not satisfy étale

descent. The prestack is not even in PΣ(Aff): if A and B are infinite sets, then taking the

product of a finite subset of A with a finite subset of B in A×B forms a finite subset

of A×B, but not all finite subsets of A×B are obtained this way. We also remark that

Finsurj,op has contractible classifying space (it has an initial object) but is not sifted.

4.1.0.2. The model of the space of rational maps that we are interested is a prestack

over the Ran space. This will be (in a sense we will make precise later) different from

the formulation using generic maps, which we studied in the previous sections. In the

present situation, we are restricting the domains of definitions of the rational functions to

graph complements. The upshot is that this space will be presented by a more reasonable

colimit made up of ind-schemes. As usual, we denote the unstraightening of Ran(X) as

the Cartesian fibration Aff//Ran(X) → Aff.
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The category Aff//Ran(X) is a discrete category which is easy to describe:

• the objects are (S, I ⊂ X(S)) where S is an affine scheme and I ⊂ X(S) is a

finite nonempty subset,

• the morphisms, displayed as (T , J ⊂ X(T ))→ (S, I ⊂ X(S)), is a map of affine

schemes p : T → S such that under the map p∗ : X(S) → X(T ), we get that

p∗I = J .

Remark 4.1.4. There are variants of Ran where, in the description of the morphisms,

instead of requiring that p∗I = J we requite p∗I ⊂ J . In [8], this is written as DomΓ
X and the

corresponding Cartesian fibration over Aff sits in between (4.8) below; see [8, Construction

5.2.1].

4.1.0.3. We have a functor

(4.8) c : Aff//Ran(X) → DomX

which takes (S, I ⊂ X(S)) to (S,XS \ ΓI ⊂ X × S) where ΓI is the union of the graph of

the morphisms in I.

Construction 4.1.5. Let X be a separated scheme and let Y ∈ P(Sch) be a presheaf.

We define the presheaf

(4.9) RatMaps(X,Y ) : Affop → Spc

as the straightening of the Cartesian fibration RatMaps(X,Y )Ran(X) → Aff//Ran(X) → Aff

defined via the pullback
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(4.10) RatMaps(X,Y )Ran(X)

��

// GenMaps(X,Y )DomX

��

Aff//Ran(X)
c

//

��

DomX

Aff

Informally, a point in the space RatMaps(X,Y )(T ) classifies (I ⊂ X(T ), f) where I

is a finite non-empty subset of X(T ) and f is a map from XT to Y defined away from the

graph of XT , i.e. a morphism f : XT \ ΓI → Y .

4.1.0.4. As the map RatMaps(X,Y )Ran(X) → Aff//Ran(X) in (4.10) is a map of Carte-

sian fibrations (in the sense that it preserves Cartesian arrows) over Aff we have a canonical

morphism of prestacks RatMaps(X,Y )→ Ran(X).

We also have the following colimit formulation of the space of rational maps. We

have the canonical map XI → Ran(X) from its formulation as a colimit, We write

RatMaps(X,Y )I := XI ×Ran(X) RatMaps(X,Y ). For a finite surjective morphism I → J

we then obtain a canonical map of prestacks RatMaps(X,Y )J → RatMaps(X,Y )I .

Lemma 4.1.6. We have a canonical equivalence

(4.11) RatMaps(X,Y ) ' colim
Finsurj,op

RatMaps(X,Y )I .

Proof. This follows by universality of colimits:

colim
Finsurj,op

(XI ×Ran(X) RatMaps(X,Y )) ' colim
Finsurj,op

XI ×Ran(X) RatMaps(X,Y )

' Ran(X)×Ran(X) RatMaps(X,Y )

' RatMaps(X,Y ).

�
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4.1.0.5. The E-motive of RatMaps(X,Y ). We now set the stage for the computation of

RatMaps(X,Y ) — as far as we know this is the maximal generality where the computations

can be performed. For the remainder of this section, we work over a perfect field k — so

our prestacks are defined over Affk. Suppose that E ∈ CAlg(SH(k)), and consider the

functor constructed in §2.2

(4.12) ME(−) : P(Aff) −→ ModE(k),

which associates to a prestack X its E-motive ME(X ).

4.1.0.6. Suppose now that C is a smooth, complete curve over k. Suppose that Y is an

arbitrary k-scheme, then the map

(4.13) π : RatMaps(C,Y )→ Ran(C)

induces a map on the level of E-motives

(4.14) MEπ : ME(RatMaps(C,Y ))→ ME(Ran(C)).

According to [31] and [32] the map (4.13) induces an equivalence on `-adic homology.

This is the kind of theorems that we are working towards for (4.14), but as we will see

there are actual obstructions to proving statements like this on the nose for ME.

4.1.0.7. Nonetheless, we proceed. To begin, we consider the map RatMaps(C,Y )I → CI

for I ∈ Finsurj. In the case that Y = An we have a the following

Proposition 4.1.7. The map MERatMaps(C, An)I → MEC
I is an equivalence

Proof. In fact the equivalence occurs on the level of H(k). For simplicity, we let n = 1

which already has all the ideas involved. There is a filtration on RatMaps(C, A1)

(4.15) RatMaps(C, A1)≤0
I ⊂ RatMaps(C, A1)≤1

I ⊂ · · · ⊂ RatMaps(C, A1)≤dI ⊂ · · · .

where a lift
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(4.16) RatMaps(C, A1)≤dI

��

T
t

//

88

CI

classifies (I ⊂ C(T ), f) where I is a finite nonempty subset (classified by t) and f is

a rational function on CT with poles of degree d along ΓI . Such a data is classified by

the set H0(CT ; OCT (dΓI)). Now, by the Riemann-Roch theorem, as soon as d > 2g− 2

the cohomology group H1(CT ; OCT (dΓI)) disappears so that RatMaps(C, A1)≤dI → CI

is representable by a vector bundle of rank d − 1 + g. Hence, for each d, the map

Ψ(RatMaps(C, A1)≤dI ) → CI is an LA1-equivalence. Since Ψ(RatMaps(C, A1)) '

colim Ψ(RatMaps(C, A1)≤d), as Ψ preserves colimits, we are done in this case.

For the general case we note that RatMaps(C, An)I ' RatMaps(C, A1)I ×XI · · · ×XI

RatMaps(C, A1)I in P(Affk) and we can carry out the same argument with the filtration

(4.17) RatMaps(C, An)≤dI :=⊂ RatMaps(C, A1)≤dI ×XI · · · ×XI RatMaps(C, A1)≤dI

�

As a result, if we take the colimit along Finsurj,op we obtain

Corollary 4.1.8. The map (4.14) is an equivalence when Y = An.

4.1.0.8. Now suppose that Y ⊂ An is a dense open subset. Let I ∈ Finsurj be fixed and

let Z ⊂ An be a fixed closed complement to Y with any scheme structure. Then we have

a monomorphism of prestacks

(4.18) iZ : RatMaps(C,Z) ↪→ RatMaps(C, An),
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i.e., for any test scheme T , RatMaps(C,Z)(T ) is spanned by those rational maps (I ⊂

X(T ), f) where f : XT \ ΓI → An factors through Z. The key geometric fact about the

inclusion iZ is the following Lemma

Lemma 4.1.9 (Gaitsgory [31], Gaitsgory-Lurie [32]). Suppose that d > 2g − 2 so

that RatMaps(C, An)≤dI → XI is a vector bundle. Then the map RatMaps(C,Z)≤dI ↪→

RatMaps(C, An)≤dI is a closed immersion of schemes whose codimension of is bounded

below by

(4.19) n(d′ − (1 + g))− (n− 1)d′ +C = d′ − n(1 + g) +C.

where C is a constant that is independent of d′.

Proof. This is [31, Lemma 4.4.5]. We sketch the proof for completeness (and also

because the author is a fan of the argument). By Noether normalization, we may choose

a projection π : An → An−1 which is finite on Z ⊂ An. This then induces a map

π : RatMaps(C,Z) → RatMaps(C, An−1). The claim is then for fixed I and for d large

enough, the map RatMaps(C,Z)≤dI → RatMaps(C, An−1)≤dI is finite. If this was the case

then we are looking at a finite morphism between schemes over XI where the latter is a

vector bundle of rank the dimension of H0(C, O(D))n−1 where D is divisor of degree d,

i.e., it is of dimension n− 1(d+ 1− g) = (n− 1)d+ (n− 1)(1− g) and so the constant

we take is (n− 1)(1− g).

Now, the map of schemes RatMaps(C,Z)≤dI → RatMaps(C, An−1)≤dI is affine and so

we will obtain a finite morphism if it is also proper [65, Tag 01WG]. To check properness we

need only check the valuative criterion for properness which unpacks to the the following:
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• Suppose that X is an affine regular curve and V ⊂ X is the complement of a

point of C, the following lifting problem has a solution

(4.20) V × (C \ ΓI)

��

g
// Z

��

X × (C \ ΓI)
f

//

88

// An−1

Now the map Z → An−1, being finite, is proper, so we can always extend g to an open

subscheme of X ×C \ ΓI whose complement is is of codimension 2. But now the scheme

X ×C \ ΓI is normal and we have a map, defined on an open subscheme whose complement

is dimension 2, going to an affine scheme. Using the algebraic version of Hartog’s theorem

(see, for example, [36, Theorem 6.45]) we may uniquely extend to all of X ×C \ ΓI .

�

The complement of the map (4.18) is not quite RatMaps(C,Y ). We record it a

description of it as a lemma

Lemma 4.1.10. The complement of the monomorphism (4.18) classifies, for any

T ∈ Affk,

(4.21)

RatMaps(C,Y ⊂ An)(T ) := {(I ⊂ X(T ), f) : f takes a generic point of XT \ ΓI to U}.

In particular, if if d > 2g− 2, then RatMaps(C,Y ⊂ An)≤dI ⊂ RatMaps(C, An)≤dI is an

open subscheme of a vector bundle over XI .

4.1.0.9. We now come to the first contractibility theorem. We have a map fY :

RatMaps(C,Y ⊂ An) ⊂ RatMaps(C, An)→ Ran(C).

Theorem 4.1.11. Let C be a smooth, complete curve over a field k and let Y ⊂ An.

Then the map

(4.22) MEfY : MERatMaps(C,Y ⊂ An)→ MERan(C)
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is an equivalence.

Proof. We begin by fixing an I ∈ Finsurj. We first claim that the map

(4.23) MEfY ,I : MERatMaps(C,Y ⊂ An)I → MEX
I

is an equivalence. We define

(4.24) RatMaps(C,Y ⊂ An)≤dI := RatMaps(C,Y ⊂ An)I ∩RatMaps(C, An)≤dI

so that RatMaps(C,Y ⊂ An)≤dI is indeed the open complement of the closed subscheme

(when d is large enough) of RatMaps(C,Z)≤dI where Z is a chosen closed complement of

Y . We also have a filtration

(4.25)

RatMaps(C,Y ⊂ An)≤0
I ⊂ RatMaps(C,Y ⊂ An)≤1

I ⊂ · · · ⊂ RatMaps(C,Y ⊂ An)≤dI ⊂ · · · .

which is compatible with (4.15) and in the colimit we obtain the open immersion

(4.26)

colim RatMaps(C,Y ⊂ An)≤dI ' RatMaps(C,Y ⊂ An)I ↪→ colim RatMaps(C, An)≤dI .

Using Lemma 2.2.9 we conclude by Lemma 4.1.9 that we have an equivalence

(4.27) MERatMaps(C,Y ⊂ An)I ' MERatMaps(C,Y ⊂ An)I ,

and we conclude using Corollary 4.1.8. Taking the colimit along Finsurj we obtain the

theorem since all functors in sight commute with colimits. �

4.2. Contractibility of the Ran space

We have proved the equivalence

(4.28) ME(RatMaps(C,Y ⊂ An))
'→ ME(Ran(C))
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in Theorem 4.1.11. For this result to be useful, or at least to generalize the results of [31],

[32] we would require two statements:

(1) that the map RatMaps(C,Y ) ⊂ RatMaps(C,Y ⊂ An) induces an equivalence

upon applying ME and,

(2) that the canonical map MERan(C) → ME(Spec k) = E is an equivalence, i.e.,

the E-motive of the Ran space is that of a point.

As we will see the second statement, or a variant of it, will imply the first. In general

one should not expect ME(Ran(C)) to be equivalent to E as the next example shows.

Example 4.2.1. Let X be a k-scheme, then by definition and the compactness of

the unit object in ME we have an equivalence HE
0,0(Ran(X))

'→ colimI∈Finsurj,op HE
0,0(X

I).

Suppose that E = MZ be the motivic cohomology spectrum, then HMZ
0,0 (X) ' CH0(X)

when X is projective by [51, Page 47] and [51, Proposition 14.18]. There are many

examples where colim CH0(XI) is not Z (which it would be if MMZRan(X) is equiva-

lent to MMZ(Spec k)). For the first example let X be an elliptic curve over k. Then

colimI CH0(XI) ∼= colimI X
I(k) as abelian groups which are way larger than Z.

4.2.0.1. The lack of contractibility of the Ran space, or rather, the lack of connectedness

of the Ran space is actually related to the issue of descent discussed in Remark 4.1.3. The

usual argument [32, Proposition 2.4.8] proves, at least morally, that the étale motive of

the Ran space is connected. More precisely it was proved in loc. cit. that Hét,0(−; Λ)

is equivalent to Hét,0(Spec k; Λ) for any coefficient ring Λ. This is actually the only

obstruction to the contractibility of the Ran space.

4.2.0.2. To clarify this issue and proceed further, we shall explain how to contract the

Ran space in H(S).

Definition 4.2.2. Let X ∈ P(AffS). We say that it is an idempotent prestack if there

exists a map m : X ×X → X which endows it with the structure of a commutative

monoid object in Ho(P(AffS)) subject to the following condition:
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• The composite of the diagonal map ∆ : X → X ×X with m is equivalent to

the identity, i.e. we have a homotopy

(4.29) m ◦ ∆ α,'−→ idX .

Proposition 4.2.3. Let S be a quasicompact and locally Noetherian and suppose that

X is idempotent prestack which is also A1-connected, then the canonical map to the

terminal object in P(SmS), Ψ(X )→ S is an Lmot-equivalence.

Proof. We shall drop the Ψ throughout the proof so that X just means Ψ(X ). We

claim that for n ≥ 0, and any base point x ∈X (S) (of which there is a single choice up to

Lmot-equivalence due to the assumptions!), the Nisnevch sheaf πNis,A1
n (X ,x) is isomorphic

to the terminal object object in the topos ShvNis(SmS)
♥. for all n ≥ 0. The hypotheses

assures the hypercompleteness of the ∞-topos ShvNis(SmS) (see [50, Corollary 3.7.7.3]

for an overkill statement) and so this is enough for the desired statement.

The claim is indeed true for πNis,A1

0 (X ) by assumption. Furthermore, we see that

the set πA1
0 (X )(S) is not empty and is a singleton, so we may choose an S-point of X ,

x : S →X with respect to which we compute the A1-homotopy sheaves of X .

We check that πNis,A1
n (X ,x)(T ) is a singleton for every S-scheme T , i.e., we check

the claim sectionwise. For convenience, we define Vn := πA1
n (X ,x)(T ). For all n ≥ 1,

the set Vn is an abelian groups in two ways — using the fact that X is, in particular, an

H-space (i.e. we use the induced map m∗) and the natural abelian group structure on

homotopy sheaves (which we denote by +). By the usual Eckman-Hilton argument, the

structures agree.

We will see that for all η ∈ Vn, we get that η = 0. First, observe that in the abelian

group Vn, we have that m∗(η, 0) = η = m∗(0, η). Furthermore, by the idempotent

condition we have that η = m∗(η, η). Therefore we conclude that η = m∗(η, η) =

m∗(0, η) +m∗(η, 0) = 2η, from which we conclude that η = 0.

�
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4.2.0.3. Proposition 4.2.3 encourages us to construct a version of the Ran space which

is idempotent but also A1-connected. For many reasons, we would not want to just take

the connected cover τ≥1Ran(X) — for one, prestacks living over this prestack, such as

τ≥1RatMaps(X,Y ) lose all their moduli interpretations.

Instead, we will first construct a version of the Ran space which is idempotent, A1-

connected and is a certain sheafification of the Ran space. The corresponding sheafification

of RatMaps(C,Y ) will then be equivalent to Ran(C), after applying ME. We will then

explain how this is a refinement of the results of [31] and [32]

4.2.0.4. Here is the version of the Ran space we will be studying.

Definition 4.2.4. Let X ∈ Sch. The cycle-Ran space of X is the prestack

(4.30) Rancyc(X) : Affop → Set ⊂ Spc

T 7→ {Z ⊂ X ×S T a closed subset : the map Z → T is finite and surjective}.

We remark that Z ⊂ X ×S T being a closed subset means that Z is equipped with

the reduced scheme structure. The scheme Z need not be irreducible — for examples just

take the graph of T -points of X, i.e., points coming from Ran(X). The functoriality of

Rancyc(X) comes from the fact that being a finite morphism and being surjective is stable

under arbitrary pullbacks of affine schemes (or any scheme). We can also describe the

associated Cartesian fibration Aff//Rancyc(X) → Aff:

• the objects are (S,Z ⊂ S ×X) where S is an affine scheme and Z ⊂ S ×X is a

closed subset such that the map Z → S is finite and surjective.

• the morphisms, displayed as (T ,Z ′)→ (S,Z), is a map of affine schemes p : T →

S such that under the map p∗Z = Z ′.

There is an obvious morphism of prestacks

(4.31) t : Ran(X)→ Rancyc(X), (S, I) 7→ (S, ΓI).
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4.2.0.5. We will prove that the prestack Rancyc(X) is actually a stack in the h-topology;

in fact it is the h-sheafification of the Ran space. For safety we now restrict ourselves

to a Noetherian base S 1. In this context, the h-topology on SchS was first introduced

by Voevodsky in [70]. For our purposes and the reader’s peace of mind we give some

impressions of how this topology looks like:

(1) The h-topology is the Grothendieck topology associated to the pretopology where

the covering families are finite collections {pi : Ui → X} of finite type morphisms

such that ∐
i Ui → X is a universal topological epimorphism [70, Definition 3.1.2].

(2) It is finer than the étale or the proper topology on SchS and is not subcanonical

(representable presheaves are not h-sheaves).

(3) It is generated by open coverings as well as coverings of shape {p : Y → X} where

p is proper and surjective (see [70, Proposition 3.1.3] and [62, Theorem 8.4] for

the generality suitable for our situation).

(4) The typical example of an h-cover includes faithfully flat morphisms and proper

surjections.

Proposition 4.2.5. The prestack Rancyc(X) is an h-sheaf. Furthermore, map Ran(X)→

Rancyc(X) is an Lh-equivalence.

Proof. By [62, Theorem 8.4] we need to check Zariski descent for Rancyc(X) and

descent with respect to a single proper surjective morphism {T → S}.

First we check that Rancyc(X) is in PΣ(Aff). To do so take T1,T2 ∈ Aff and let

T := T1
∐
T2. We have a map

(4.32) Rancyc(X)(T )→ Rancyc(X)(T1)×Rancyc(X)(T2)

defined by taking a Z ⊂ X ×S T ' X ×S (T1
∐
T2) 7→ (Z ×S T1,Z ×S T2). But now we

have that Z = Z ×S T1
∐
Z ×S T2 since coproducts are disjoint in Sch and thus we have

1Often the statements below are modified by adding “(locally) of finite presentations,” see [62].
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the inverse map

(4.33) Rancyc(X)(T )← Rancyc(X)(T1)×Rancyc(X)(T2)

by taking coproducts.

Now suppose that U is connected and suppose that U1,U2 ⊂ U are open subschemes,

we need to check that the following is equalizer diagram

(4.34) Rancyc(X)(U)→ Rancyc(X)(U1
∐
U2) ⇒ Rancyc(X)(U1 ∩U2).

Indeed, if Z1 ⊂ X×U1 and Z2 ⊂ X×U2 are closed subsets which agrees on the intersection,

we obtain a unique closed subset Z restricting to Zi and X ×Ui. The only thing we need

to note is that Z → U is finite and surjective if Zi → Ui are. This is clear for surjective.

Now, being finite is equivalent to quasi-finite and proper [38, Chapter III, Exercise 11.2].

The requisite property is clear for quasi-finite and we conclude using the fact that being

proper is local on the base [38, Chapter II, Corollary 4.8.f]. That ends the proof of Zariski

descent.

Now, suppose that p : T → S is a proper morphism, we need to check that the following

is an equalizer diagram

(4.35) Rancyc(X)(S)→ Rancyc(X)(T ) ⇒ Rancyc(X)(T ×S T ).

But this follows because finite morphisms are, in particular, proper and hence has descent

along proper maps.

Finally, we want to prove that the map Ran(X) → Rancyc(X) is an Lh-equivalence.

To do so, we fix a point t : T → Rancyc(X). Then we would like to show that there exists

an h-cover T̃ → T and a solution to the following lifting problem
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(4.36) Ran(X)

��

T̃ //

t̃
66

T
t
// Rancyc(X)

.

Concretely t classifies a subset Z ⊂ T ×X where the map Z → T is finite and surjective.

We want to find an h-cover T̃ such that ZT̃ is the union of a graphs of morphisms from

T̃ → X. Over connected components of T , the map Z → T has different degrees. Since

Zariski covers are h-covers we may assume that Z → T has a constant degree d. In this

case, the morphism Z → T itself an h-cover of T since proper morphisms are h-covers.

Pulling Z back across itself, we obtain a section ∆ : Z → Z ×T Z. The complement is

of degree d− 1 over Z. We repeat this procedure d-times to obtain a proper morphism

T̃ → T equipped with d-sections T̃ → ZT̃ , and thus obtaining a point T̃ → Ran(X) as

desired.

�

4.2.0.6. Now we restrict to working over a perfect field k. Our goal is to prove the

following fundamental fact about Rancyc(X):

Theorem 4.2.6. Let X be a connected quasiprojective k-scheme, then Rancyc(X) is

A1-connected and is thus Lmot-equivalent to Spec k.

As a corollary

Corollary 4.2.7. Let X be a connected k-scheme then the canonical map Rancyc(X)→

Spec k is an Lmot-equivalence. In particular LhRan(X)→ Spec k is an Lmot-equivalence.

Proof. Clearly, Rancyc(X) is an idempotent prestack: we have a multiplication map

(4.37) Rancyc(X)(T )×Rancyc(X)(T )→ Rancyc(X)(T ); (Z,Z ′) 7→ Z ∪Z.
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such that m∆ = id on the nose. By Theorem 4.2.6, the hypotheses of Proposition 4.2.3

applies and so is its conclusion. The last statement is an immediate consequence of

Proposition 4.2.5.

�

4.2.0.7. A1-connectedness. We require some preliminaries on A1-connected spaces in

order to prove Theorem 4.2.6. First an interlude on the size of the fields we are working

over

Remark 4.2.8. One thorny aspect of the subject of motivic homotopy theory is the

size of the field. This issue stems from the usage of a fundamental theorem of Gabber,

which we review the statements of in Appendix A. To the best knowledge of the author, the

paper of Hogadi and Kulkarni [39] supplies a proof of Gabber’s theorem using techniques

from Poonen’s finite fields Bertini theorem [58] while [57] resolves its ramifications in

motivic homotopy theory. For the purposes of this paper, we assume that Gabber’s

theorem holds over finite fields. If the reader wishes to be safe, she can assume that

we are working over an infinite field.

4.2.0.8. Recall a more “naive” notion of A1-connectedness.

Definition 4.2.9. We say that X ∈ P(Smk) is A1-chain connected if for every finitely

generated separable field extension L of k, the set

(4.38) π0(SingA1
(X )(L)) = ∗.

Note that π0(SingA1
(X )(L)) is the equalizer

(4.39) π0(X (∆1
L)) ⇒ π0(X (L))→ π0(SingA1

(X )(L)).

Unpacking this, X ∈ P(Smk) is A1-chain connected if and only if:

(1) The space X (L) is nonempty and,
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(2) Given points x, y ∈ X (L), we may find x0, ..., xn and maps fi : A1 → X (L)

such that fi(0) = xi and fi(1) = xi+1; In other words, we may be able to connect

points insider X using A1-paths.

4.2.0.9. The next theorem is essentially due to Morel and is stated in, say [1].

Theorem 4.2.10. Suppose X ∈ P(Smk) and X is A1-chain connected, then X is

A1-connected.

Here we piece together a complete proof of this theorem. To begin, we need an

intermediate definition between A1-chain connected and A1-connected; this definition can

be found in [52, Definition 3.3.5].

Definition 4.2.11. Suppose that X ∈ P(Smk). We say that X is weakly A1-

connected if for every T ∈ Smk which is irreducible then on the function field of T

we have πA1
0 (X )(Spec k(T )) = ∗.

The condition above is implied by being A1-connected, however it is a priori weaker

as we are only checking sections of the homotopy sheaves at generic points of varieties.

Our goal is to reverse this implication.

4.2.0.10. The next Lemma is [52, Lemma 3.3.6]. However, the proof there contains

a mistake which can be corrected using arguments in a later paper of Morel [53]. For

convenience and to avoid confusion, we reproduce the proof. This is the part where we

need to appeal to Gabber’s lemma.

Lemma 4.2.12. [Morel, [52]] Assume that X is Lmot-local so that X ' LmotX .

Suppose that X is weakly A1-connected, then X is A1-connected.

Proof. Let Y ∈ Sm/k and s : Y → πNis
0 (X ) be an element. Since πNis

0 (X ) has, in

particular, Zariski descent we may assume that Y is irreducible. We wish to show that s

is indeed trivial. In order to do this, it suffices to prove that there exists a Nisnevich cover

V → Y such that the composite V → Y → πNis
0 (X ) is trivial.
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We first note that the map of simplicial sheaves X → π0(X ) is an epimorphism

(where the latter is treated as a discrete one), hence there exists a cover V of Y for which

we have the following commutative diagram (not necessarily Cartesian):

(4.40) V //

��

X

��

Y // πNis
0 X

Hence, we may assume that the section s lifts to X .

Now the goal is to show that the composite

(4.41) Y →X → π0(X )

is indeed trivial. The section X (k(Y )) is calculated as the colimit colimV⊂Y X (V ),

where the colimit runs over the filtered category of Zariski open subsets of Y . Furthermore

since sheafification does not change stalks and fields are Henselian local rings, we have

that πNis
0 (X )(L) ∼= π0(colimV⊂Y X (V )) ∼= colimV⊂Y π0(X (V )). By assumption there

exists a dense open subset W ⊂ Y for which the composite W → Y →X is homotopic

to a constant map; say at a point x ∈X .

Therefore the map W → Y → X induces a map Y /W → X that factors Y → X .

We claim that Lmot(Y → Y /W ) is nullhomotopic. This will suffice because the diagram:

(4.42) Y //

��

X

Y /W

;;
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factors through:

(4.43) LmotY //

��

X

LmotY /W

99

because X is Lmot-local and thus we have proved that the map Y →X is homotopy to

a constant map.

To prove the claim, we take a Zariski cover of Y , {Uα} and prove it for each Uα →

Uα/W ∩Uα. This is where Gabber’s lemma comes in: for each y ∈ Y we may choose U

satisfying Gabber’s lemma (Theorem A.0.1). In other words:

• We find a map φ : U → A1
V where V ⊂ Ad−1 where d = dim Y such that for

ZU := U \ (U ∩W ) we have that φ−1(φ(ZU )) = ZU

Hence, we get an equivalence:

(4.44) U

U \ZU
' A1

V

A1
V \ZU

.

Therefore, in order to show that Lmot(U → U/(W ∩U)) is nullhomotopic, we need only

show that Lmot(A1
V → A1

V /A1
V \ZU ) is nullhomotopic. This is done in the Lemma 4.2.13

below.

�

Lemma 4.2.13. Let (U ,V ,φ = (ψ, v)) be as in Gabber’s Lemma (Theorem A.0.1),

then the map A1
V →

A1
V

A1
V \ZU

is A1-nullhomotopic (i.e. nullhomotopic after LA1-localization).

Proof. First, note that F := ψ(Z ∩U) ⊂ V is closed so that the map ZU → A1
V → P1

V

is still closed and misses the section at ∞. In order to prove that the desired map is

nullhomotopic, one observes that the map factors through A1
V →

A1
V

A1
V \A

1
F

so that we need

only prove that A1
V

A1
V \A

1
F
→ A1

V

A1
V \ZU

is A1-nullhomotopic.



80

Now there exists a weak equivalence: A1
V

A1
V \ZU

' P1
V

P1
V \ZU

, the idea is that upon A1-

localization, we may “move” the image of map A1
V

A1
V \A

1
F
→ P1

V

P1
V \ZU

inside the “denominator”

of the target. Let us carefully execute this.

We have an A1-weak equivalence V
(V \F ) →

A1
V

A1
V \A

1
F

so it suffices to prove the claim for

the composite V
V \F →

P1
V

P1
V \ZU

. This map is induced by the map V → P1
V which includes

the zero section (being more detailed: one observes that F ⊂ P1
V is a closed immersion

and F ⊂ ZU by the definition of the map in Gabber’s lemma so that V \ F is an open

that lies inside P1
V \ZU ). But now we note that the zero section is A1-homotopic to the

∞-section, whence s∞(V ) ⊂ P1
V \ZU .

�

Proof of 4.2.10. After Lemma 4.2.12 we need only check that X is weakly A1-

connected. Let L be a separable finitely generated extension of k, then we have a surjection

(4.45) π0(SingA1
(X )(L))→ π0(Lmot(X )(L)) = πA1

0 (X )(L)

using the unstable A1-connectivity theorem [55, Corollary I.3.22] and the fact that fields

are Henselian local rings and hence we are done. �

4.2.0.11. Divisor spaces and Rancyc. We need one last preliminary material before we

can prove Theorem 4.2.6. Recall that if X is an S-scheme, then there is a presheaf of sets

(4.46)

DivX/S : Affop
S → Set; DivX/S(T ) = {D ⊂ XT : D is a relative effective divisor over T}.

Grothendieck proved that presheaf DivX/S is in fact representable by a scheme and is an

open subscheme of the Hilbert scheme of X [37]. Whenever X → S is a relative curve

(so pure relative dimension 1) DivX/S is in fact a smooth scheme [12]. We denote the

universal relative effective divisor by ZX/S ⊂ DivX/S ×S X.

4.2.0.12. There is a morphism of prestacks that relates Rancyc(X) and DivX/S
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Proposition 4.2.14. Let S be a base scheme and X and S-scheme, there is a morphism

of prestacks,

(4.47) γ : DivX/S → Rancyc(X).

Suppose that S = Spec k is the spectrum of a field k and X is a curve, the map f is

surjective on all field extensions of k.

Proof. Taking the support of the relative effective divisor defines the map γ; alterna-

tively ZX/S itself defines a DivX/S-point of Rancyc(X)2. For the second statement, let

L/k be a finitely generated extension of k. Then any L point of Rancyc(X) classifies a

closed subset Z ⊂ XL, which determines an effective Cartier divisor on XL which is flat

over the field L. �

4.2.0.13. From our point of view, DivX/S is useful for “drawing” A1-paths in the Ran

space.

Proposition 4.2.15. Let S be a base scheme and X an S-scheme, then the relative

effective divisor D is linearly equivalent to E if and only if there a morphism

(4.48) f : A1
S → DivX/S

such that i0 ◦ f = D and i1 ◦ f = E.

Proof. Being linearly equivalent is equivalent to saying (or by definition) that there

exists an effective relative cycle Z ⊂ A1
S ×S X such that if π : Z → A1

k is the first

projection, then π−1(0) = D and π−1(1) = E. Hence this data is the same as a morphism

A1
S → DivX/k satisfying the conditions above. �

We call a map as in (4.48) an A1-path.

2So we get a map of prestacks defined as functors out of Schop
S .
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4.2.0.14. We will now provide a

proof of Theorem 4.2.6. First we let X = C a curve. By Theorem 4.2.10 we

need only show Rancyc(C) is A1-chain connected. Let L be a finitely generated separable

extension of k and take x, y ∈ Rancyc(C)(L). By the last statement of Proposition 4.2.14

there exists divisors which maps onto x and y. For any m ≥ 0. x and mx have the same

support in L×k X, so they determine the same point in Ran(X)cyc(X)(L). Hence we

claim that there exists an A1-path connecting mx to my for m large enough. Choose n

such that nx− y and ny− x are linearly equivalent to effective divisors on X, call them

D and E respectively.

Now up to linear equivalence we have the following equalities:

(1) (n2 + n)x = (n+ 1)nx = n+ 1(y+D) = x+E + y+ (n+ 1)D

(2) Similarly, (n2 + n)y = x+D+ y+ (n+ 1)E

By Proposition 4.2.15, we conclude that there exists an A1-path connecting (n2 +n)x to

x+E+ y+ (n+ 1)D and (n2 + n)y to x+D+ y+ (n+ 1)E. However in Rancyc(X)(L)

we have the identifications

(1) x = (n2 + n)x,

(2) y = (n2 + n)y and,

(3) x+D+ y+ (n+ 1)E = x+D+ y+E = x+E + y+ (n+ 1)D.

Therefore we conclude that there exists an A1-path connecting (n2 + n)x to (n2 + n)y

and thus an A1 connecting x and y in Rancyc(X)(L).

For the general case, let X be quasiprojective over k and L a finitely generated separable

extension of k. Suppose that x ∈ Rancyc(X)(L) and y ∈ Rancyc(X)(L) are two L-points

of Rancyc(X). By Lemma 4.2.16, for any two L-points of X, a, b, there exists a smooth

connected curve C and a map θ : C → X such that a, b are in the image of θ. Hence, we

can construct a map θRan : Rancyc(C)→ Rancyc(X) such that a and b are in the image

of θRan. We then done using the A1-connectedness of Rancyc(C).

�
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Lemma 4.2.16. Let X be a connected quasi-projective L-variety, then given any two

L-points, x, y of X, there exists a smooth connected curve C over L and a morphism

f : C → X such that x, y ∈ f(C)

Proof. By Chow’s lemma, we may find a projective L-scheme X ′ such that f : X ′ → X

is surjective and X ′ is proper. Therefore we may assume that X is proper. Consider the

blow-up Blx,yX → X with two exceptional divisors Ex and Ey. We may choose a closed

embedding Blx,yX ↪→ PN
k since X, and thus Blx,yX, is projective. In this scenario, we

can use Bertini’s theorem (use [58] in the finite field case) to pick a hyperplane section

that meets Ex and Ey properly. Blowing Ex and Ey back down gives us a codimension 1

subscheme of X on which x, y lies. Therefore the problem reduces to a dimension lower

and we may eventually assume that X is a projective curve in which the claim is true by

taking a normalization X̃ → X of X, whence X̃ is smooth and connected. �

4.2.0.15. Let us obtain some consequences of Theorem 4.2.6. Suppose that X,Y are

k-schemes. Let U ⊂ Y be a dense open subscheme.

Proposition 4.2.17. The RatMaps(X,U) → RatMaps(X,U ⊂ Y ) is an LmotLh-

equivalence. In particular, we have an LmotLh-equivalence

(4.49) ME(RatMaps(X,U))→ ME(RatMaps(X,U ⊂ Y ))

Proof. We claim that the map RatMaps(X,U)→ RatMaps(X,U ⊂ Y ) is an LmotLh-

equivalence in P(Affk). The proof follows [32, Proposition 3.5.3] closely. By universality of

colimits (Proposition B.0.3) it suffices to prove the following: for any T an affine k-scheme

and any map α : T → RatMaps(X,U ⊂ Y ), classifying (I ⊂ X(T ), f : XR \ ΓI → U),

the map X := RatMaps(X,U) ×RatMaps(X,U⊂Y ) RatMaps(X,U ⊂ Y )α/ → T is an

LmotLh-equivalence. Let K := XR \ f−1(U), which is a closed subset of K. We observe

that

(4.50) X ↪→ Ran(X)T
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where, as a Cartesian fibration over AffT , X classifies (T ′, I ′ ⊂ X(T ′)) such that I ′ gets

mapped to I and that I ′ contains the inverse image of K. We claim that X ↪→ Ran(X)T

is an Lh-equivalence on AffT . Indeed, h-locally, we may find a finite subset J ⊂ X(T )

containing I and the graph of J contains the closed subset K. This lets us write down an

adjoint equivalence

(4.51) X � Ran(X)T

where the right adjoint is given by sending (T ′, I ′) to (T ′, I ′ ∪ p−1J) where p : T ′ → T is

the structure map. Hence, the classifying ∞-groupoids of X and Ran(X)T are h-locally

equivalent. We thus conclude by Theorem 4.2.6 and Propostion 4.2.5. �

4.2.0.16. Finally we have that

Theorem 4.2.18. Let C be a smooth complete curve over a field k, and let Y be a

connected affine scheme which can be covered by open subsets of An (i.e. quasi-affine).

Then the map

(4.52) MEfY : ME(LmotLhRatMaps(C,Y ))→ E

is an equivalence.

Proof. After Proposition 3.2.10 we are reduced to the case that Y ⊂ An. This case

follows from a string of equivalences

ME(LmotLhRatMaps(C,Y )) ' ME(LmotLhRatMaps(C,Y ⊂ An))

' ME(LmotLhRan(X))

' ME(Rancyc(X))

' E.
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Here, the first equivalence is Proposition 4.2.17, the second equivalence is Theo-

rem 4.1.11, the third is Proposition 4.2.5 and the last is Corollary 4.2.7.

�
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CHAPTER 5

Consequences and realizations

5.1. Rational versus generic maps

We now compare rational and generic maps. Let X ∈ Sch and Y ∈ P(Sch). We have a

map of prestacks from (4.10)

(5.1) α : RatMaps(X,Y )→ GenMaps(X,Y )

Proposition 5.1.1. The map α is an Lfppf-equivalence.

Proof. This follows from [8, Proposition 5.2.2]. �

5.1.0.1. Hence, using Theorem 3.3.8 we can give a more general version of Theorem 4.2.18

Theorem 5.1.2. Let C be a curve over a field k, and let Y be a connected, separated

scheme which has a Zariski cover {Uα} where Uα is a dense open subset of Anα. Then

the map

(5.2) Σ∞T fY+ : Σ∞T LhRatMaps(C,Y )+ → Σ∞T Spec k+ = 1

is an equivalence. In particular, for any E ∈ CAlg(SH(k)), the map

(5.3) MEfY : ME(LmotLhRatMaps(C,Y ))→ E

is an equivalence.
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Proof. Follows from the string of equivalences

Σ∞T LhRatMaps(C,Y )+ ' Σ∞T LhGenMaps(C,Y )+

' Σ∞T Spec k+

Where the first equivalence is Proposition 5.1.1 and the fact that the h-topology is finer than

the fppf topology (any faithfully flat map of finite presentation is a universal topological

epimorphism), the second follows from Theorem 3.3.8. �

Remark 5.1.3. Theorem 5.1.2 is indeed stronger than Theorem 4.2.18. However

our intention in giving an independent proof of Theorem 4.2.18 is to show explain the

fact that there is a motivic relationship between RatMaps(C,Y ) and the Ran space,

which is of independent interest, and show the proofs of the corresponding statements in

[31] and [32] are indeed motivic in nature. Indeed, this motivic relationship shows that

an “on-the-nose” contractibility of RatMaps(C,Y ) is not true exactly because the Ran

space is not “on-the-nose” contractible — it is only so after h-sheafification. What makes

Theorem 5.1.2 stronger is that contractibility is proved without recourse to dimension

estimates but instead relies on the unstable statement Theorme 3.3.8 which in turn relies

on Suslin’s Theorem 3.3.4.

5.2. Étale and Betti realizations

5.2.0.1. Betti realization. We let k be a field of characteristic zero and choose an

embedding k ⊂ C. Recall that the Betti realization functor is defined by first consider the

functor

(5.4) Smk → SmC → Spt;X 7→ XC 7→ Σ∞XC(C)+.
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where, for a C-scheme Y , Y (C) is the C-points of Y endowed with the analytic topology,

i.e. its analytification. By left Kan extension we have a functor PSpt(Smk)→ Spt. This

functor factors through Nisnevich sheaves of spectra (since it takes Nisnevich covers to

covers of the analytification) which are A1-invariant (since A1 gets sent to the contractible

space C) and also factors through T-inversion (since T gets sent to the invertible object

S2 and the functor is monoidal). As a net effect we get a functor

(5.5) Bettik : SH(k)→ Spt.

In fact, since étale covers of schemes are sent to covers in the analytic topology as well,

the functor Bettik factors through the étale localization functor π∗ : SH(k)→ SHét(k) as

(5.6) Bettiét
k : SHét → Spt.

5.2.0.2. Since the h-topology is finer than the étale topology, it is not clear that the

functor Bettik will factor through the stable motivic homotopy ∞-category constructed

from the h-topology SHh(k). Instead we work with a linearized version of the above

functors. Consider the motivic spectrum MZ representing motivic cohomology with

coefficients in Z. Using the fact that the constituent motivic spaces MZ can be represented

by symmetric powers of schemes [76] and resolution of singularities over characteristic

zero, we deduce that BettikMZ ' HZ. As a result we have a Betti realization functor on

the level of MZ-modules

(5.7) Bettik,Z : ModMZ(k)→ ModHZ,
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compatible with the functor 5.5 in the sense that the following diagram of left adjoints

commute

(5.8) SH(k)

MMZ(−)
��

Bettik
// Spt

HZ∧−
��

ModMZ(k)
Bettik,Z

// ModHZ.

5.2.0.3. Now, recall that there is an equivalence of ∞-categories

(5.9) DM(k,R) ' ModMR(k)

whenever k is a field with a characteristic invertible in R (see [61] for the original theorem

proved in characteristic zero, see [27] for the general statement over perfect fields and [17]

to obtain the result over general fields). So we have a functor DM(k, Z)→ ModHZ which

factors through the étale localization π∗ : DM(k; Z)→ DMét(k; Z) as the functor

(5.10) Bettiét
k,Z : DMét(k,R)→ D(Z).

The functor Bettiét
k,Z is also compatible with the functor 5.6 in the obvious way.

5.2.0.4. According to [18, Corollary 5.5.5] we have a further equivalence

(5.11) λ∗ : DMét(k,R) '→ DMh(k,R) : λ∗,

between étale motives and h-motives (true for any coefficient R).

5.2.0.5. Here’s a consequence of the equivalence (5.11). We have a functor Rtr
k : Schk →

Shvtr
ét(Smk;R) [18, 2.1.3] sending a scheme X to the free presheaf of R-modules with

transfers:

(5.12) Rtr
k (X) : U 7→ ck(U ,X)⊗Z R,

where ck(U ,X) are finite correspondences from U to X in the sense of [16, 9.1.2]. This is

an étale sheaf (by [18, Proposition 2.1.4]). Under the various localizations and T-inversion
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[18, 2.2.4] we have a functor

(5.13) Σ∞tr,ét : Shvtr
ét(Smk;R)→ DMét(k,R).

We have a composite of functors Mét(−;R) := Σ∞tr,ét ◦Rtr : Schk → DMét(k,R) which we

Kan extend to a functor

(5.14) Mét(−;R) : P(Schk)→ DMét(k,R).

With this set-up, the equivalence (5.11) gives us an equivalence for any X ∈ P(SchS).

(5.15) λ∗RhMMRLmotLhX ' Mét(X;R).

In other words, the h-sheafified motivic homotopy type realizes in DMét(k,R) to its étale

motive. Thus, in the situation of Theorem 5.1.2 we get that

(5.16) Mét(RatMaps(C,Y );R) ' Mét(Spec k;R).

From this we deduce immediately that

Theorem 5.2.1. Let C be a curve over a field of characteristic zero k, and let Y be

a connected, separated scheme which has a Zariski cover {Uα} where Uα is a dense open

subset of Anα. Then the homology groups H∗,Sing(RatMaps(C,Y ); Z) are concetrated in

degree 0 and H0
Sing(RatMaps(C,Y ); Z) = Z.

This reproves the main theorem of [8] which is, in turn, a more general version of [31]

5.2.0.6. Étale realization. Now we let k be an arbitrary field. Let us turn to the étale

realizations of Theorem 5.1.2 which is just a matter of plugging in the right coefficients.

Indeed, in the discussion of (5.2.0.3) just plug in R = Z`, the `-adic integers, and ` is prime

to the characteristic of k then Ayoub [5] and Cisinski-Déglise [18] proves an equivalence

between the triangulated category 1 of h-motives and the unbounded derived category of

1It is easy to see that the equivalence is one of stable ∞-categories.
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`-adic sheaves, generalizing Suslin rigidity

(5.17) DMh(k, Z`)
'→ Dét(k, Z`).

As a net result, under the realization functor ModMZ` → DMh(k, Z`) ' Dét(k, Z`),

Theorem 5.1.2 gives us the `-adic contractibility statement of [32, Lemma 3.6.1]:

Theorem 5.2.2. Let C be a curve over a field k and let ` be prime to the charac-

teristic of k. Let Y be a connected, separated scheme which has a Zariski cover {Uα}

where Uα is a dense open subset of Anα. Then for any q ∈ Z, the étale homology groups

H∗,ét(RatMaps(C,Y ); Z`(q)) are concentrated in degree 0 and H0,ét(RatMaps(C,Y ); Z`) '

Z`(q)).
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APPENDIX A

Gabber’s presentation lemma

In this very brief appendix we recall the statement of Gabber’s Lemma, as stated in

[19].

Theorem A.0.1. [Gabber’s presentation lemma] Suppose that X is an d-dimensional

affine scheme over a field k, and Z is a closed subscheme of codimension n > 0. Then for

any x ∈ X there exists (U ,V ,φ) where:

(1) φ = (ψ, v) : X → Ad
k

(2) V ⊂ Ad−1
k is an open subscheme, and U ⊂ ψ−1(V ) is an open subscheme

containing x

subject to the following conditions:

(1) ψ |Z : Z → Ad−1
k is finite.

(2) φ |U : U → Ad
k is étale

(3) φ |Z∩U : Z ∩U → Ad
k is a closed immersion.

(4) φ−1(φ(Z ∩U)) ' Z ∩U

The point of the Gabber’s lemma is that we obtain the following Nisnevich distinguished

square. Write Z ∩U := ZU , then

Corollary A.0.2. With the notation above, we get an Nisnevich distinguished square:

U \ZU //

��

U

φ
��

A1
V \ZU // A1

V

where we have implicitly identified ZU with its image under φ.
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APPENDIX B

Foundational aspects of motivic homotopy theory

In this appendix we review some constructions and terminology in motivic homotopy

theory. The only notion unfamiliar to practioners in the field is T-prestability in B.0.2.

This notion and the notion of motivic module categories will appear in greater detail

in a revised version of the author’s paper with Kolderup in [27] where we used Lurie’s

Barr-Beck theorem to prove that certain stable ∞-categories defined as “cycle complexes”

are actually modules over a motivic E∞-ring spectrum.

B.0.1. Motivic homotopy theory in various contexts

Let us recall some properties of functors F : Schop → C.

Definition B.0.1. Let M be a collection of arrows in Sch which are closed under

pullback along arbitrary maps. We say that F is M-invariant if for all arrows X → Y in

M, the induced map F (Y )→ F (X) is an equivalence. In the following special cases of M

we say that F is

(1) homotopy invariant if M = {X ×A1 → X}X∈Sch,

(2) vector bundle invariant if M = {p : E → X : p is a vector bundle}X∈Sch,

(3) affine torsor invariant if M = {p : E → X : p is an torsor under An for some n }X∈Sch,

Denote by PM(Sch) the ∞-category of M-invariant presheaves.

B.0.1.1. Suppose that C ⊂ Schop is a full subcategory and suppose that M∩C is still

closed under pullbacks. For each of the classes of M in Definition (B.0.1), we would like to

construct a “well behaved” localization functor

(B.1) P(C)→ PM(C).
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These good behavior should already be exhibited by arguably the first non-formal input of

motivic homotopy theory: the Suslin construction after [55, Section 2]. The generality

for which this works is an ∞-category with an interval object; we adopt the definition in

[2, Definition 4.1.1].

Definition B.0.2. Let C be a small ∞-category with products. A representable

interval object I is a presheaf on C equipped with a multiplication map m : I × I → I and

end point maps i0, i1 : ∗ → I such that

(1) For any X ∈ C the presheaf X × I is representable.

(2) Let p : I → ∗ be the canonical map, then we have homotopies:

• m ◦ (i0 × id) ' m(id×i0) ' i0p,

• m ◦ (i1 × id) ' m(id×i1) ' id

A presheaf F on C is I-invariant if for all X ∈ C the natural map F (X)→ F (X × I)

is an equivalence. The Suslin construction applied to F ∈ C is the functor

(B.2) P(C)→ P(C)∆op
;F 7→ SingIF (X) := F (X × I•)

where the maps F (X × In) → F (X × Im) is induced by the endpoint maps in Defini-

tion B.0.2. The geometric realization of SingI(F) will be denoted, as usual, by |SingI(F )|.

B.0.1.2. Indeed, the basic properties of the Suslin construction are summarized in the

next proposition.

Proposition B.0.3. Let C be a small ∞-category with a representable interval object

I.

(1) The functor |SingI | : P(C)→ P(C) is a localization at MI = {X × I → X}X∈C.

(2) Suppose that C has finite coproducts and finite coproducts distributes over products,

then the functor SingI preserves coproduct-preserving presheaves so it descends to
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a localization

|SingI | : PΣ(C)→ PΣ(C).

(3) The functor |SingI | preserves finite products.

(4) The map F → |SingI(F )| induces an epimorphism π0(F )→ π0(|SingI(F )|).

(5) The functor SingI is locally Cartesian and hence the localization at MI has

universal colimits.

Proof. The fact that SingI is localization is [55, Section 2 Corollaries 3.5, 3.8]. The

second claim follows from

|SingIF (X
∐
Y )| = colim

∆op
F ((X

∐
Y )× In)

' colim
∆op

F (X × In
∐
Y × In)

' colim
∆op

F (X × In)× F (Y × In)

' colim
∆op

F (X × In)× colim
∆op

F (Y × In)

= |SingIF (X)| × |SingIF (Y )|.

Here, the second equivalence follows from the assumption on C, the second follows from the

assumption on F , the third follows because sifted colimits commutes with finite products

in Spc. This last fact also leads to the fact that SingI preserves finite products. The fourth

claim follows from the fact that the diagram

(B.3) π0(F (X × I)) ⇒ π0(F (X))→ π0(|SingI(F )(X)|).

is a coequalizer for all X ∈ C. For the last claim, recall that an endofunctor F : D→ D

is locally Cartesian if the map L(X ×Y Z) → X ×Y L(Z) is an equivalence for any

X,Y ∈ F (D); if F is a localization it is easy to see that the essential image of F ends

up having universal colimits if D does. To check this for Sing, suppose that F ,G,H are

presheaves on C where F ,G are I-invariant, and X ∈ C is an object then
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|SingIF ×SingIG SingIH(X)| = colim
∆op

F (X × I•)×G(X×I•) H(X × I•)

' colim
∆op

F (X)×G(X) H(X × I•)

' F (X)×G(X) colim
∆op

H(X × I•)

' F (X)×G(X) |SingI(H)(X)|

Here, the equivalence in the third line is justified by the fact that we are taking a colimit

of a contractible diagram taking a constant value and universality of colimits in P(C). �

Remark B.0.4. We remark that Hoyois has a less explicit but equally useful local-

ization functor that inverts a collection of arrows M which are stable under pullback —

these include the other examples in B.0.1 — in [42]. It satisfies all the properties of

Propostion B.0.3.

B.0.1.3. From the above discussion, we see that a “homotopy theory of schemes where

A1 is treated as the unit interval” can be carried out for any subcategory C ⊂ Sch such

that for any X ∈ C, the object X ×A1 ∈ C. In fact Voevodsky has discussed axioms for C

where motivic homotopy theory can be suitably carried out; for example in [76, Appendix

A]. These axioms are designed such that that we may contemplate the motive/motivic

homotopy type of n-th symmetric powers Symn(X) := Xn/Σn for all n ≥ 1. These are,

in general, singular schemes which are the scheme-theoretic quotients of a finite group

acting on a scheme.

Definition B.0.5. A subcategory C ⊂ SchS is admissible if

(1) The terminal object and A1 are in C,

(2) the category C is closed under finite products and coproducts and,
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(3) closed under étale extensions: if U → Y is an étale morphism and Y ∈ C then

U ∈ C.

Furthermore we say that C is f -admissible if it closed under the formation of (scheme-

theoretic) quotients with respect to actions of finite groups.

B.0.1.4. After [7], it is best to consider C satisfying the following condition

Definition B.0.6. An ∞-category C is extensive if

(1) has finite coproducts,

(2) binary coproducts are disjoint and,

(3) coproduct decompositions are stable under pullbacks.

If this is the case then [7, Lemma 2.4] says that PΣ(C) is an∞-topos.; in fact PΣ(C) is

the ∞-category of sheaves on C for the topology generated by coproduct decompositions.

In particular PΣ(C) has universal colimits. With these remarks in mind, any kind of

motivic homotopy theory that we will construct will always start with the following

assumptions on C ⊂ SchS :

(1) C contains the terminal object S and A1,

(2) is closed under coproducts and products,

(3) is extensive,

(4) is closed under étale extensions,

(5) C is closed under formation of scheme-theoretic quotients with respect to actions

of finite groups.

We call subcategories of SchS satisfying (1)-(4) geometrically admissible and subcate-

gories satisfying (1)-(5) geometrically admissible with quotients.

Example B.0.7. Examples of geometrically admissible categories with quotients

include quasi-affine and quasi-projective schemes over SchS . If we were to drop assumption

(5) then the usual category SmS used to build motivic homotopy theory is an example.
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B.0.1.5. Now we discuss topologies. Many topologies in motivic homotopy theory come

from a cd-structure:

Definition B.0.8. Suppose that C is a small discrete category with an initial object

∅. A cd-structure on C is a collection of squares P which is stable under isomorphisms.

This generates a topology τP which is the coarest topology C in which the empty sieve

covers ∅ and for any square

(B.4) W

��

// V

��

U // X

the sieve on X generated by {V → X,U → X} is a τP covering sieve of X.

Example B.0.9. Many examples are listed at the beginning of [2, Example 2.1.2]. Most

prominently we have the Nisnevich topology where the squares are Nisnevich distinguished

squares [2, Example 2.1.2.2] and the Zariski topology where the squares are open covers.

There is also the cdh-squares which are of the form

(B.5) W

��

// XZ

��

Z // X

where Z → X is a closed immersion, XZ → X is proper and the map (X \Z)×X XZ →

X \Z is an isomorphism. Another one are the square of the form

(B.6) ∅

��

// U

��

V // X
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where X = U
∐
V . This is also cd-structure and generates the topology of coproduct

decomposiiton — on an extensive ∞-category C, the ∞-category of sheaves with respect

to this topology is equivalent to the nonabelian derived ∞-category.

B.0.1.6. The main theorem about cd-structures is due to Voevodsky. Suppose that C is

a small discrete category and P is a cd-structure. We say that the cd-structure is excisive

if

(1) every square in P is Cartesian,

(2) pullbacks in P exists and are in P ,

(3) For each square (B.7) the bottom horizontal map U → X is monic and,

(4) The squares in P are closed under diagonals: given a square as in (B.7) the square

(B.7) W

��

// V

��

W ×U W // V ×X V

is also in P .

Theorem B.0.10 (Voevodsky, [2, Theorem 3.2.5], [75, Corollary 3.2.5]). Let C be a

small discrete category equipped with an excisive cd-structure on C. Then F ∈ ShvτP (C)

if and only if F takes squares in P to pullbacks.

We remark, however, that the h-topology that has featured in the main body of the paper

is not an example of a topology generated by a cd-structure.

B.0.1.7. Thus motivic homotopy theory can be performed efficiently with any C ⊂ SchS
which is geometrically admissible and a τP a topology which is assumed to be finer than

the topology generated by coproduct decompositions. We define

(B.8) HτP (C) := ShvτP (C) ∩PA1(C) ⊂ PΣ(C)

where PA1 denote A1-invariant sheaves. We denote the localization functor endofunctor

as Lmot : PΣ(C)→ PΣ(C) and the context will always be clear. As prevalent throughout
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the main text we’ve also used LA1 : PΣ(C)→ PΣ(C) as the A1-localization endofunctor.

Morel and Voevodsky’s motivic homotopy category was originally constructed where

C = SmS and τP = Nis. We drop just write H(S) in this case as we did throughout the

text.

Remark B.0.11. We make the following simple observation: as soon as τp is at

least as fine as the Zariski topology if we let M to be the class of vector bundles, then

PM(C) ∩ ShvτP (C) ' H(C).

Remark B.0.12. Suppose that C is a geometrically admissible category with quotients.

Suppose that G is a finite group and let CBG denote the category of G-objects in C (simply

Fun(BG, C) and hence the notation), then Voevodsky in [22] has defined in the equivariant

Nisnevich topology then we have a functor (−)/G : CBG → C, taking a scheme to its

quotients. In our language, Voevodsky proves that this functor defines a functor, via

sifted-colimit preserving extensions (−)/G : PΣ(CBG) → PΣ(C) which descends to a

functor ShvNis(CBG)→ ShvNis(C). This functor is important in defining the symmetric

powers of a motivic space in [76]. This is one value for considering PΣ(C) and working

with sifted colimits — we have more control over the kinds of colimits we adjoin in the

first place.

B.0.1.8. The key property that one uses all the time when there is a cd-structure around

is the following

Proposition B.0.13. Suppose that C is a geometrically admissible subcategory of SchS
and suppose that τP is an excisive cd-structure then the functor Lmot : PτP (C)→ PτP (C)

preserves compact objects.

Proof. We claim that the inclusion Hτ (C) ⊂ PΣ(C) preserves filtered colimits. This is

obvious for A1-invariant presheaves. Now since colimits commute with finite limits in any

∞-topoi, the claim follows from the fact being a sheaf can be checked using the equivalent

condition of Theorem B.0.10. �
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B.0.1.9. Stabilization, in the sense of [49, Section 1.4] is easy enough to define using,

for example, the technology of spectrum objects as in [49, Section 1.4.2]. Alternatively,

since PΣ(C) is a presentable ∞-category the stabilization of PΣ(C) can be calculated as

the colimit

(B.9) PΣ(C)∗
Σ→ PΣ(C)∗

Σ→ · · · .

as explained in [49, Proposition 1.4.4.4]. The universal property of Stab(PΣ(C)) is then

given in the following way: there is a functor Σ∞S1,+ : PΣ(C) → Stab(PΣ(C)) such that

given any other presentable stable ∞-category D the induced map

(B.10) MapsPrL(Stab(PΣ(C)), D)
(Σ∞
S1,+)

∗,'
→ MapsPrL(C, D)

is an equivalence. According to [35, Theorem 5.1], the the functor Σ∞S1,+ : PΣ(C) →

Stab(PΣ(C)) is symmetric monoidal and the universal property discussed above can be

enhanced to one that takes into account symmetric monoidal structures by [35, Proposition

5.4]. We also note that Stab(PΣ(C)) can be concretely modeled as a presentably symmetric

monoidal ∞-category by Fun×(Cop, Spt) =: PΣ,Spt(C) or the full subcategory presheaves

of spectra on C which takes coproducts to products (equivalently coproducts as Spt is

stable). As a sum total of this discussion, we have the stabilization of Hτ (C), Stab(H(C))

is the full symmetric monoidal subcategory of PΣ,Spt(C) which are τ -sheaves of spectra

and are A1-invariant.

B.0.2. Digression: the notion of T-prestability

We introduce a notion which captures many phenomena in motivic homotopy theory — this

notion will be elaborated further in [27] where we will prove that this notion generalizes

the “effective motives” used to define the slice filtration, as introduced by Voevodsky in

[73]. To motivate this notion, let us recall the notion of prestability introduced by Lurie

in [50, Appendix C].
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Definition B.0.14. Suppose that C is an ∞-category which is pointed and has finite

colimits. Then the Spanier-Whitehead ∞-category of C, which we denote by SW(C), is

the colimit

(B.11) C Σ→ C Σ→ C · · ·

taken in Cat∞.

B.0.2.1. The following properties about the colimits of the form (B.11) will be repeatedly

used in the sequel

Proposition B.0.15. Suppose that C : I → Cat∞, i 7→ Ci is a diagram such that

• Each Ci is a pointed, small ∞-category.

• Each Ci has finite colimits, is idempotent complete and the transition functors

are right exact.

Then:

(1) The colimit C := colimCi exists and the colimit can be calculated in Catidem,rex
∞ ,

the ∞-category of idempotent complete ∞-categories with finite colimits and right

exact functors so that, in particular, C is idempotent complete and has finite

colimits.

(2) Suppose that κ is a regular cardinal, then we have an equivalence

(B.12) colim
I

Indκ(Ci) ' Indκ(C).

(3) We also have an equivalence

(B.13) Indκ(C)κ ' C.

Proof. The first statement follows from [49, Proposition 7.3.5.10]. The next two

statements are immmediate consequences of [48, Proposition 5.5.7.10]. �
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B.0.2.2. A prestable ∞-category C can then be characterized in the following way

Definition B.0.16. A pointed ∞-category C with finite colimits is prestable if

(1) The suspension functor C is fully faithful.

(2) The essential image of the canonical functor C→ SW(C) is closed under exten-

sions.

Example B.0.17. Let C = Spt≥0 the ∞-category of finite spectra. Then C satisfies

condition (1) of Definition B.0.16. Now SW(C) ' Spt and the essential image of the

canonical functor Spt≥0 ↪→ Spt is closed under extensions. Indeed, this is the prototypical

example of a prestable ∞-category which is also closed under finite limits by [50, Proposi-

tion C.1.2.9] and so we may think of a prestable ∞-category (at least those with finite

limits) as the nonnegative part of a t-structure on a stable ∞-category.

B.0.2.3. We will now give motivic analogs of the above definitions; the point is that

we want to axiomatize what it means to the “effective part” of a “motivic” category. To

begin, let S be a scheme, then the ∞-category H(S)ω∗ is the full subcategory of H(S)∗

spanned by the compact objects of H(S)∗. Here is a more concrete description.

Proposition B.0.18. Suppose that S is quasiseparated. The ∞-category H(S)ω∗ is

the idempotent completion of the ∞-category generated under finite colimits by Lmot(X+)

where X is a smooth S-scheme which is affine.

Proof. The ∞-category H(S)∗ is generated under sifted colimits by Lmot(X+) where

X is smooth and affine: from the fact that PΣ(SmS+) ' PΣ(SmS)∗, we get that it is

generated by Lmot(X+) where X is a smooth S-scheme and using Zariski descent we

may resolve any such X using a simplicial resolution by smooth affine schemes under the

quasiseparatedness hypothesis. Since reflection onto Nisnevich sheaves preserves filtered

colimits, the object Lmot(X+) is compact and hence the result follows.

�
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B.0.2.4. We also claim that H(S)ω∗ is a symmetric monoidal ∞-category.

Proposition B.0.19. Let X,Y ∈ H(S)ω∗ then X ⊗ Y ∈ H(S)ω∗ so that H(S)ω∗ is a

symmetric monoidal ∞-category and the inclusion H(S)ω∗ ⊂ H(S)∗ is symmetric monoidal.

Proof. Suppose that {Zi} is a filtered diagram in H(S)∗. The claim follows by:

Maps(X ⊗ Y , colimZi) ' Maps(X, Maps(Y , colimZi))

' Maps(X, colim Maps(Y ,Zi))

' lim Maps(X, Maps(Y ,Zi))

' lim Maps(X ⊗ Y ,Zi).

�

The ∞-category H(S)ω∗ is then a symmetric monoidal ∞-category which is idempotent

complete [48, Proposition 5.3.4.16] and has finite colimits. We let Catidem,rex
∞ be the

∞-category whose objects are idempotent complete ∞-categories with small colimits and

whose functors are finite-colimit preserving functors. This∞-category inherits a symmetric

monoidal structure [49, 4.8.1] so we may speak of algebras and modules in this∞-category.

We note that H(S)ω∗ is a E∞-algebra object and write ModH(S)ω∗ as the ∞-category of

modules over this E∞-algebras in Catidem,rex
∞

B.0.2.5. Definitions B.0.16 and B.0.14 then motivates the following definition in motivic

homotopy theory.

Definition B.0.20. Let C ∈ ModH(S)ω∗ . Then the Spanier-Whitehead motivic ∞-

category of C is the colimit

(B.14) C T⊗−→ C T⊗−→ C · · ·

taken in ModH(S)ω∗ . We denote this ∞-category by SWmot(C).
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Proposition B.0.21. There is an equivalence of H(S)∗-modules

(B.15) C[T−1]
'→ SWmot(C).

In particular, the ∞-category SWmot(C) is a stable ∞-category and satisfies the following

universal property: suppose that D is an H(S)∗-module such that the action of T is

invertible, then the canonical functor C→ SWmot(C) defines a fully faithful embedding

(B.16) MapsModH(S)∗
(SWmot(C), D) ↪→ MapsH(S)∗(C, D)

where the essential image is spanned by H(S)∗-linear functors F such that the action of

F (T) is invertible in D.

Proof. According to Robalo [60, Proposition 2.19], since T is 3-symmetric, the T-

inversion of C is calculated as the colimit of the diagram (B.14); this verifies the desired

universal property. Using the equivalence S1 ∧ (Gm, 1) ' T in H(S)ω∗ we deduce the

stability of C. �

Example B.0.22. Using Proposition B.0.15, we obtain that SWmot(Ind(C))ω '

(Ind(C)[T−1])ω. In particular if C = H(S)ω∗ . Suppose that C = H(S)ω∗ itself, then we get

that SWmot(H(S)ω∗ ) is just, SH(S)ω, the ∞-category of compact objects in SH(S).

B.0.2.6. We now define

Definition B.0.23. An H(S)∗-module C is motivically prestable or T-prestable if

(1) The endofunctor T⊗− : C ↪→ C is fully faithful.

(2) The essential image of the canonical functor C → SWmot(C) is closed under

extensions.

A motivically prestable H(S)∗-module C is furthermore motivically stable or T-stable one

where the the endofunctor in (1) acts invertibly.

B.0.2.7. We now present some examples
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Example B.0.24. The first example of motivically prestable ∞-categories is the

derived ∞-category of étale sheaves on a scheme S with coefficients in R-modules where

the residue characteristics of S are invertible in R (e.g. `-adic sheaves where ` is prime

to the residue characteristics). One way to obtain the H(S)ω∗ -module structure uses the

general version of Suslin rigidity already used in §5.2, to obtain a composite of symmetric

monoidal functors

(B.17) H(S)ω∗ ↪→ H(S)∗
Σ∞→ SH(S)

Lét(−)tr→ DMét,tr(S,R) ' D(Sét,R)

witnessing the latter as an H(S)ω∗ -algebra. To see that the action of T is fully faithful, we

note that for any sheaf F ∈ D(Sét,R), the object T⊗F is computed as the Tate twist

shifted by 2, T⊗F = F (1)[2], which is an invertible operation in the étale topology.

Example B.0.25. Suppose that k is a perfect field and R is a commutative ring

of coefficients, then the ∞-category of effective Voevodsky motives, DMeff(k,R), is T-

prestable since the endofunctor given by tensoring with Rtr(T) is fully faithful by [74,

Corollary 4.10].

Example B.0.26. Suppose k is a perfect field and that c(k) 6= 2. Then the∞-category

of effective Milnor-Witt motives, ˜DMeff(k,R), is T-prestable since the endofunctor given

by tensoring with R̃tr(T) is fully faithful by the main theorem of [28].

Example B.0.27. Suppose k is a perfect field and that c(k) 6= 2. Then the∞-category

of framed motivic spectra SH(k)fr as in [26] is T-prestable by [26, Theorem 3.5.8]. In fact

SH(k)fr recovers SH(k)eff the ∞-category of effective motivic spectra, which is obviously

T-prestable.

Example B.0.28. We also remark that the compact objects in all the examples above

are also T-prestable ∞-categories.

B.0.2.8. In [27] we will discuss the following generalization of the slice filtration:
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Definition B.0.29. Let (C, c) be a pair where C is an H(S)ω∗ -module and c ∈ C. We

define the ∞-category of c-effective objects of C, denoted by Ceff,c, to be the localizing

∞-category in C generated by X+ ⊗ c where X ∈ SmS .

Out of this notion we can construct slice filtrations on C.

Construction B.0.30. Define ΣnTCeff,c to be the localizing subcategory generated by

T⊗n ⊗X+ ⊗ c. Then the categories ΣqTCeff,c assemble into a filtration:

(B.18) · · · ⊂ ΣqTCeff,c ⊂ Σq−1
T Ceff,c ⊂ · · · ⊂ Ceff,c ⊂ Σ−1

T Ceff,c ⊂ · · · ⊂ C.

The fully faithful embedding i
(C,c)
q : ΣqTCeff,c ↪→ C admits a right adjoint i(C,c)

q : C →

ΣqTCeff,c

Setting f (C,c)
q := i

(C,c)
q i

(C,c)
q we obtain for every M ∈ C a (C, c)-slice tower :

(B.19) · · · → f
(C,c)
q+1 M→ f (C,c)

q M→ · · · → f
(C,c)
0 M→ f

(C,c)
−1 M→ · · · → M.

We refer to f
(C,c)
q M as the q-th (C, c)-effective cover of M, and the cofiber s(C,c)

q M of

f
(C,c)
q+1 M→ f

(C,c)
q M as the q-th (C, c)-slice of M.

We will prove the following classifcation theorem for T-prestable ∞-categories in [27]

Theorem B.0.31. Let C be an H(S)ω∗ -module then the following are equivalent:

(1) C is a T-prestable ∞-category with finite limits

(2) There exists a T-stable ∞-category C′ an object c ∈ C′ and a fully faithful

embedding i : C ↪→ C′ such that the essential image of i is the subcategory of

c-effective objects of C.

Indeed there is a canonical choice of C′ by simply forming the Spanier-Whitehead

motivic ∞-category of C by taking the colimit of (B.0.14) which is T-stable by Proposi-

tion B.0.21.
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B.0.2.9. From this perspective, the ∞-category of motivic spectra, as a symmetric

monoidal ∞-category, is constructed by first considering H(S)ω and taking its Spanier-

Whitehead motivic ∞-category which identifies with SH(S)ω and then taking Ind. The

important properties of SH(S) and its universal property is then summarized in the

following way

Proposition B.0.32. Let S be a base scheme and suppose that D is an H(S)ω∗ -module

which is T-stable, then the functor Σ∞T,+ : H(S)ω → SH(S)ω induces an equivalence

(B.20) Funrex
ModH(S)ω∗

(SH(S)ω, D)→ Funrex
ModH(S)ω∗

(SH(S)ω, D).

Suppose that D is furthermore an H(S)ω∗ -algebra, then the equivalence in (B.20) can be

promoted to an equivalence of functors which are symmetric monoidal, i.e., maps of

H(S)ω∗ -algebra. The presentably symmetric monoidal ∞-category of motivic spectra is then

obtained by taking Ind of SH(S)ω.
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