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1. Introduction

The main point of the present project was to compute some non-
trivial examples of Baldwin-Ozsváth-Szabó (BOS) cohomology of links
[2, 3], and, to apply this to Heegaard-Floer homology of branched dou-
ble covers via the Baldwin-Ozsváth-Szabó twisted spectral sequence
[2]. The examples we consider here are of a different type then what
the main focus of recent interest has been, for reasons we shall explain.

Much recent interest has focused on so called L-spaces, which are
compact oriented 3-manifolds satisfying

(1) rank(ĤF (Y ) = |H1(Y,Z)|.
For example, Lisca and Stipsicz [4, 5] characterized L-spaces which are
Seifert-fibered over S2. For a branched double cover Σ(L) of a link L,
condition (1) is equivalent to

(2) rank(ĤF (Σ(L)) = det(L) 6= 0.

Baldwin, Ozsváth and Szabó [2] constructed a twisted variant of their

spectral sequence [7] convergent to ĤF (Σ(L)), which we will describe
below. The point is that the (combinatorially defined) E3-term of
the twisted spectral sequence, which we call Baldwin-Ozsváth-Szabó
(briefly BOS) cohomology, is extremely sparse (to the point that one
may conjecture it collapses, although that is not known at present).
In [3], it was proved that BOS cohomology is an invariant of oriented
links, and it was observed that this gives an good method for detecting
links which satisfy (2). The reason is that while BOS cohomology is
defined as the cohomology of a cochain complex defined over a field
of rational functions over F2 in a number of variables which increases

Elden Elmanto was supported in part by the University of Chicago. Igor Kriz was
supported by NSF grant DMS 1102614, and the Wolfensohn fund at the Institute
for Advanced Study.

1



2 ELDEN ELMANTO AND IGOR KRIZ

with the number of crossings of L (described below), from an algebraic
point of view, (2) is “generic behavior” on such complexes. Roughly,
“generic behavior” menas that anything that can cancel cancels. For
example in a 2-stage complex (given by a single linear map), generic
behavior means that the rank of the linear map is maximal allowed by
the dimension. As explained in [3] (and also used in this note), there is
a mehod for detecting generic behavior in BOS cohomology. Namely,
it is possible to set all the variables in the fraction field equal to inte-
gral powers of a single variable. If one gets lucky and the E3-term has

rank equal to det(L), it is also true in BOS cohomology, and in ĤF .
While calculations in fields of rational functions in many variables are
computationally extremely inefficient, calculations in one variable are
no problem. Because of this, (2) can be detected by BOS cohomology,
and this was used in [3] to find a new weaker condition on links whose
branched double covers are L-spaces.

To complement this, in the present project, we wanted to do com-
putations where BOS cohomology behaves non-generically, with some
applications to Heegaard-Floer homology. Since there is an algorithm
[6] for calculating Heegaard-Floer homology of Seifert-fibered spaces,
examples of hyperbolic knots are of most interest. We found that de-
spite the combinatorial definition, it is extraordinarily difficult to com-
pute directly non-generically behaved examples of BOS cohomology.
This note serves, perhaps, as a case study of the difficulty of such com-
putations. In the end, combining heuristics with computer-assisted
methods, we succeeded in computing one example (perhaps one of the
smallest ones) in Proposition 3.1 below. The example happens to be a
link with 0 determinant, and infinitely many examples of exact compu-
tation of BOS cohomology can be deduced using the skein behavior of
BOS cohomology (Proposition 4.1 and Corollary 4.2). Since all these
examples are links of determinant 0, we do not get an immediate appli-

cation to ĤF . However, using the Ozsváth-Szabó computation of ĤF
of T (7, 3) ([8]) as input, we were able to calculate BOS-cohomology and

ĤF for infinitely many new examples (Theorem 4.3, Theorem 4.5), all
but finitely many of which are hyperbolic (Proposition 4.6). The reader
should keep in mind that although we have no example of non-collapse
of the twisted BOS spectral sequence, BOS cohomology carries more

information than ĤF , since non-trivial ranks appear in different de-
grees; because of this, the BOS calculations are also of independent
interest. We consider our examples as a “proof of concept”, showing
how this method works; it is very likely that many other examples can
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be calculated in a similar way. At the same time, it is also clear that
such examples do not come cheap.

The present paper is organized as follows. In Section 2 we review the
preliminaries, i.e. the definition of BOS cohomology, the link invariance

of [3] and the BOS spectral sequence to ĤF . In Section 3, we treat
the one example of non-trivial BOS cohomology which we were able to
compute directly. In Section 4, we treat all the examples derived from
this and from what was known about T (7, 3) in [8].

Acknowledgement: We are very indebted to P.Ozsváth for com-
ments.

2. Preliminaries

Let us first describe BOS cohomology. Let D = D(L) be a non-
degenerate projection of a link L, i.e. an embedding of a link in R3

such that the projection on the xy plane is an immersion with at most
finitely many double crossings. Then the faces of the projection can be
colored black and white so that no two faces of the same color border
the same arc of the projection. Form a planar graph (with possible
multiple edges and loops) whose vertices are the faces colored black,
and edges are crossings which border two faces colored black. This is
called the black graph B(D). An edge has height 0 if the edge of the
black graph, the lower arc of the crossing and the upper arc of the
crossing occur in this order clockwise, and height 1 otherwise.

The BOS cochain complex C0(D) is then formed as follows: Pick
one vertex of the black graph as a base point. Let F be a field of
rational functions over F2 on variables corresponding to all vertices of
the black graph other than the base point and all bounded faces of the
black graph. C0(D)k is the free F -module on all spaning trees T of
B(D) whose total height is 2k; here the total height is defined to be
the number of edges of height 1 included in T plus the number of edges
of height 0 not included in T . The number k can be a half-integer, but
all the possible values of k differ by an integer.

The differential Ψ of C0 increases total degree by 1. A non-trivial
coefficient occurs between a spanning tree T and a spanning tree T ′

obtained from T by removing one edge e of height 0 and adding one
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edge f of height 1. The coefficient is of the form

1

1 + α
+

1

1 + β
,

where α is the product of all the variables corresponding to faces en-
closed inside the cycle c in T ∪ {f} provided that e, f and the base
point occur counter-clockwise on that cycle, and the product of the
inverses of all the variables corresponding to faces enclosed inside of c
otherwise; the element β is the product of all the variables correspond-
ing to vertices in the component of T r {e} not containing the base
point.

It was proved directly in [3] that Ψ is a differential, i.e. that Ψ◦Ψ = 0.
A key result of [2] is the following

2.1. Theorem. Let L be a link with non-zero determinant. Then there
exists a single-graded spectral sequence

E3 = H∗(C0(D(L)))⇒ ĤF (Σ(L))⊗F2 F.

Moreover, the grading is by total height (i.e. twice the degree), and the
spectral sequence is sparse in the sense that the only possible non-zero
differentials are of the form d4k+2, k ∈ Z.

To make BOS cohomology a knot invariant, one must correct by half
the number of negative crossings, to take care of Reidemeister 1 moves.
For an oriented link, a postive crossing is one where the upper arc of
the crossing goes from lower left to upper right and the lower arc goes
from lower right to upper left. The other kind of crossing is called a
negative crossing. Let

C(D)k = C0(D)k+n−/2

where n− is the number of negative crossings in D. The differential in
C is defined to be the same as in C0. In [3], the following was proved:

2.2. Theorem. The numbers

rankH i(C(D))

are invariants of oriented links and unoriented knots.

We therefore put

H i
BOS(L) = H i(C(D(L)).

In this paper, we will work with the unshifted BOS cohomology,
i.e. the cohomology of the complex C0(D) of a projection D where
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generating trees are graded by 1/2 times the total height. This is only
a link invariant up to shift, but if Di are the i-resolutions of D along a
single edge, i = 0, 1, we have a long exact sequence
(3)
. . .→ H i−1(C0(D0))→ H i−1/2(C0(D1))→ H i(C0(D))→ H i(C0(D0))→ . . .

Denote by Bn1,...,nk
= B(D(n1,...,nk)) the black graph in Figure 1.

Denote the corresponding link by L(n1,...,nk).

3. The link L(3,3,0)

Our first result is the following
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3.1. Proposition. We have

rankH i(C0(D(3,3,0)) =

{
1 if i = 1, 2
0 otherwise.

The proof will occupy the remainder of this section. First note that
B(3,3,0) has 18 spanning trees in heights 2 and 4 (and none others).
The differential is, then, an 18 × 18 matrix N over a field of rational
functions over F2 with ≥ 6 variables (it can be reduced from 9 to 6 by
the Fundamental lemma of [3]). It follows then that

rankH i(C0(D(3,3,0))) =

{
r if i = 1, 2
0 otherwise

for some number r = 0, 1, 2, . . . , and our statement is equivalent to
saying that r = 1, i.e. that N has rank 17. This could, in princi-
ple, be checked by computer, but it exceeds the computing power of
implementations of computer algebra softwares we could find.

Because of this, we simplified the problem as follows. Consider,
instead, D(3,3) (a projection of the knot 819 in Rolfsen’s table), and
label its vertices and faces as in Figure 2.

Put

F0 = F2(x, y1, y2, z1, z2, v),

F = F0(T ),

K = F (Q).

(The notation means adjoining algebraically independent variables, i.e.
fields of rational functions.) The variables of F0 are simply the vertex
variables which occur in the definition of BOS cohomology; the vari-
ables T,Q are related to the face variables by

f1f2 = T, f1 = Q.

It will also be convenient for our purposes to put

A =
1

1 + f1
=

1

1 +Q
, B =

1

1 + f2
=

Q

Q+ T
.

Denote by Tε,i,j, ε ∈ {0, 1}, i ∈ {1, 2}, j ∈ {1, 2, 3} the spanning tree
of B(3,3) obtained by omitting the edge eε and aij. Denote by T ′i,j,
i, j ∈ {1, 2, 3} the spannig tree obtained by omitting the edges a1i and
a2j.
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It will also be convenient to have matrix rows and columns indexed
by simple numbers, so put

u0 = T0,2,3, u1 = T0,2,2, u2 = T0,2,1,
u3 = T0,1,1, u4 = T0,1,2, u5 = T0,1,3,
u6 = T1,2,3, u7 = T1,2,2, u8 = T1,2,1,
u9 = T1,1,1, u10 = T1,1,2, u11 = T1,1,3

(these will correspond to columns) and

v1 = T ′1,1, v2 = T ′2,1, v3 = T ′3,1,
v4 = T ′1,2, v5 = T ′2,2, v6 = T ′3.2,
v7 = T ′1,3, v8 = T ′2,3, v9 = T ′3,3

(these will correspond to rows) of the {1, . . . , 9} × {0, . . . , 11} matrix
M of the differential Ψ of C0(D(3,3)). The entries of the matrix M are



8 ELDEN ELMANTO AND IGOR KRIZ

given explicitly by

M1,0 = A+ 1
1 + x, M2,0 = A+ 1

1 + xy1
,

M3,0 = A+ 1
1 + xy1y2

,

M4,1 = A+ 1
1 + xz1

, M5,1 = A+ 1
1 + xy1z1

,

M6,1 = A+ 1
1 + xy1y2z1

,

M7,2 = A+ 1
1 + xz1z2

, M8,2 = A+ 1
1 + xy1z1z2

,

M9,2 = A+ 1
1 + xy1p2z1z2

,

M1,3 = B + 1 + 1
1 + x, M4,3 = B + 1 + 1

1 + xz1
,

M7,3 = B + 1 + 1
1 + xz1z2

,

M2,4 = B + 1 + 1
1 + xy1

, M5,4 = B + 1 + 1
1 + xy1z1

,

M8,4 = B + 1 + 1
1 + xy1z1z2

,

M3,5 = B + 1 + 1
1 + xy1y2

, M6,5 = B + 1 + 1
1 + xy1y2z1

,

M9,5 = B + 1 + 1
1 + xy1y2z1z2

.

Additionally, the entry Mi,6+j is obtained from the entry Mi,j, i =
0, . . . , 5 by replacing A by A+ 1, B + 1 by B (to account for a change
of orientation) and the summand

1

1 + ζ

where ζ is any polynomial in x, y1, y2, z1, z2 by

1

1 + a/ζ

where

a = xy1y2z1z2v.

Unlisted entries Mi,j are defined to be 0.
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3.2. Lemma. Consider the field F (Q,Q′) where Q,Q′ are algebraically
independent overF . Let φ : F (Q) → F (Q,Q′) be identity on F , and
let φ(Q) = Q′. Let V be the intersection of the row space of M with
〈U6, . . . ,11 〉 where Ui denotes the row vector with 1 in the column cor-
responding to ui, and 0’s in the other columns. Then dimF (Q)(V ) = 3.
Additionally, let w1, w2, w3 be a basis of V consisting of vectors for
which there exist different i1, i2, i3 ∈ {6, . . . , 11} such that wj has ik’th
coordinate equal to δkj , j, k ∈ {1, 2, 3}. Then

(4) r = 3− rankF (Q,Q′)

 w1 − φ(w1)
w2 − φ(w2)
w3 − φ(w3)

 .

Proof: The matrix M is a submatrix of the matrix of differentials
of C0(D(3,3,0). More explicitly, we will index things so that M is the
{1, . . . , 9}×{0, . . . , 11} submatrix of the {1, . . . 18}×{0, . . . , 17}matrix
N . Again, we will denote the rows of N by vi and columns by uj.
Explicitly, in B(3,3,0), there are additional spanning trees T2,i,j which are
obtained by replacing e0 by e2 in T0,i,j. These correspond to additional
columns

u12 = T2,2,3, u13 = T2,2,2, u14 = T2,2,1,
u15 = T2,1,1, u16 = T2,1,2, u17 = T2,1,3.

There are also 9 additional spanning trees T ′′i,j obtained by replacing
in T ′i,j the edge e0 by e2. Let the row v9+i, i = 1, . . . , 9, be obtained
from the row vi by replacing T ′ with T ′′, thus obtaining 9 additional
rows. The additional non-zero entries of N are described as follows:
The (i + 9, j + 12)-entry (i = 1, . . . , 9, j = 0, . . . , 11) is obtained from
the (i, j)-entry by replacing A, B with A′, B′ where, in the field

K ′ = F (Q′),

A′ =
1

1 +Q′
, B′ =

Q′

Q′ + T
.

(One has Q′ = f1g, T/Q′ = f2/g where g is the face between e0 and
e2.)

Now letN1 resp. N2 be the {1, . . . 9}×{0, . . . , 17} resp. {10, . . . , 18}×
{0, . . . , 17} submatrices. First note that the rank of each of the ma-
trices N1 and N2 is 9 by the calculation of the BOS cohomology of
819 in [3] (it is also verified by the computer-assisted calculation which
we will describe below). This implies that the space V defined in the
statement of the Lemma has

dimF (Q)(V ) = 3.
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Now let w1, w2, w3 be a basis as in the statement of the Lemma. By
equality of row and column rank, r is the rank of the F (Q,Q′)-space
of 6− tuples (α1, . . . , α6) ∈ F (Q,Q′)6 such that

α1w1 + α2w2 + α3w3 = α4φ(w1) + α5φ(w2) + α6φ(w3).

Obviously, however, by the assumptions about wi, we must have

αi = α3+i, i = 1, 2, 3,

and the statement follows. �

Now to use the Lema, we first construct explicitly a non-zero element
w ∈ V which is of the form

w =
11∑
i=6

αiui, αi ∈ F0.

This will show r ≥ 1. To construct w, let

X = V1 + V2 + V4 + V5,
Y = V1 + V2 + V7 + V8,
Z = V1 + V3 + V4 + V6,
T = V1 + V3 + V7 + V9

where we denote by Vi the i’th row vector of M . One sees immedi-
ately from the definition of the row vectors Vi that X, Y, Z, T are linear
combinations of the vectors Uj, j = 0, . . . , 11 with coefficients in F0.

Now putting

p1 = M4,1 +M5,1 q1 = M2,4 +M5,4

p2 = M7,2 +M8,2 q2 = M2,4 +M8,4

p3 = M4,1 +M6,1 q3 = M3,5 +M6,5

p4 = M7,2 +M9,2 q4 = M3,5 +M9,5

(p1 and p3 are the u1-coordinates of X,Z respectively, p3 and p4 are the
u2-coordinates of Y, T respectively, q1 and q2 are the u4-coordinates of
X, Y respectively, and q3 and q4 are the u5-coordinates of Z, T respec-
tively; those are all the non-zero u1, u2, u4, u5 coordinates of X, Y, Z, T ).

Then one verifies by hand that

p1p4
p2p3

=
q1q4
q2q3

.

This means that in the vector

w = X +
q2
q1
Y +

p3
p1
Z +

p4
p2

q2
q1
T,
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the u1, u2, u4, u5 coordinates vanish. One then checks, by hand again,
that the u0 and u3 coordinates vanish as well, thus proving the desired
statement about w.

Proving that r ≤ 1 is done by using Lemma 3.2. We did this as
follows: Since we are hoping to detect the absence of a relation at a
generic point, it is possible to work at a special point (since a relation
absent at a special point cannot occur at the generic point, using the
argument made in detail at the end of [3]). Thus, we re-wrote the
matrix M over the ring R = F0[A,B] where F0 = F2(t), setting

x = t, y1 = t2, y2 = T, z1 = t4,
z2 = t, v = t6, a = t15.

(The choices of the exponents are arbitrary, with the understanding
that too special choices could create unwanted special relations; a field
of rational functions in a single variable was chosen because computer
algebra systems seem to work much more efficiently in that setting.)
We then used Sage to execute manually the Buchberger algorithm for
finding a Gröbner basis of 〈V1, . . . , V9〉 ver the ring R, with lexico-
graphic ordering u0 > u1 > · · · > u11 > A,B and degree-lex A > B
order in A,B (the latter of which was chosen because Sage naturally
uses that ordering when working with F0[A,B]). The main reason we
worked manually is to be able to use heuristics (such as identifying the
vector w above) for speeding up the algorithm. In 70 easy steps, the
Gröbner basis elements we found had leading terms

u0, u1, u2, u5, AB
2u6, A

2u6,
u7, Au8, B

2u8, A
2B2u9.

Note that for our purposes, having a Gröbner basis is actually irrele-
vant; again, it is merely a tool for performing Gauss elimination over
the fraction field of R which, when done by brute force, would exceed
the computational power of our current implementation of Sage. We
may then get w1, w2, w3 by taking w and our Gröbner basis vectors
with leading terms Au8 and A2B2u9 and bringing them to reduced row
echelon form, using the substitution

A =
1

1 +Q
, B =

Q

Q+ T
, T = t10.

Again, the choice of T was arbitrary, hoping to avoid a special relation.
As it turns out, when construction the reduced row echelon form, we
can actually ignore w, since we already know it results in a zero row.
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We used Sage to find by direct computation that w2 − φ(w2), w3 −
φ(w3) are linearly independent (this took several minutes), thus con-
cluding that r = 1. This concludes the proof of Proposition 3.1.

4. Other links with non-trivial BOS cohomologies and
branched double covers with interesting

ĤF -homologies

4.1. Proposition. We have

rank(H i(C0(D(3,3,k)))) =

{
1 for i = 1, 2
0 else.

Proof: We proceed by induction on k. For k = 0, this is the state-
ment of Proposition 3.1. Suppose the statement is true for a given k.
Consider the long exact sequence for the cohomology of C0(D(3,3,k+1))
obtained by resolving the edge a3,k+1. Then the 1-resolution is actually
an unlink with 2 components, and hence has 0 BOS cohomology. On
the other hand, the 0-resolution is D(3,3,k). Thus, from (3) we obtain

H i(C0(D(3,3,k+1))) ∼= H i(C0(D(3,3,k))),

and the induction step is complete. �

4.2. Corollary. We have

rank(H i(C0(D(3,6)))) =

{
1 for i = 1, 2
0 else.

Proof: Consider the long exact sequence (3) form D(3,3,3) resolving the
edge e0. The 0-resolution is D(3,6), the 1-resolution is an unlink with 2
components, hence has trivial BOS cohomology. We conclude that

H i(C0(D(3,3,3))) ∼= H i(C0(D(3,6))),

and the statement follows from Proposition 4.1. �

Unfortunately, all the examples of links for which we have computed
non-trivial BOS cohomology so far have determinant 0, so we cannot

use the BOS spectral sequence to make conclusions about ĤF of their
branched double covers. Consider now the black graph Bk = B(Ek),
k ≥ 2, depicted in Figure 3. Denote the corresponding link by Lk. This
is a knot if k ≥ 3 is odd and a link with two components when k ≥ 2
is even.
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4.3. Theorem. For k ≥ 2,

rankH i(C0(Ek)) =

 1 for i = 3/2, 5/2
k − 2 for i = 7/2
0 else.

Proof: Resolve the projection Ek at the edge a. The 0-resolution E0k
is D(3,3,k+1) after undoing a single R2 move, thus,

H i(C0(D(3,3,k+1))) ∼= H i+1/2(C0(E0k )),

i.e.

rankH i(C0(E0k )) =

{
1 for i = 3/2, 5/2
0 else.

On the other hand, the 1-resolution can be processed as follows: An
R3 move combined with undoing a positive (non-height changing) R1
move gives a move shown in Figure 4.

Undoing three R2 moves and three positive R1 moves, we obtain the
black graph shown in Figure 5 and, after undoing two R2 moves, we
obtain a cycle of k − 2 height 0 edges when k > 2, and an unlink of
two components when k = 2.

We have then

rankH i(C0(E1k )) =

{
k − 2 for i = 3
0 else.
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Figure 4
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For k = 2, we are therefore done. For k > 2, we are done if we can
show the following statement. �

4.4. Lemma. The connecting map

H i(C0(E0k ))
δ // H i+1/2(C0(E1k ))

of (3) is 0 for all i.

Proof: For k = 3, E3 is actually a projection of the mirror of T (7, 3),

whose ĤF has rank 3 by [8]. Therefore, we must have δ = 0 by the
Baldwin-Ozsváth-Szabó spectral sequence.

Now our proof will be by induction on k ≥ 3. Consider, for k > 3,

the 0-resolutions E (1)k , E (2)k of Ek at ek−1, ek. Then every spanning tree

of the black graph of Ek gives rise to a spanning tree of E (i)k for i = 1
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or i = 2, and the spanning trees which give rise to both give rise to

spanning trees of the 0-resolution E (12)k at both ek−1, ek.
We have, then, a “Mayer-Vietoris exact sequence”

(5) 0 // mc0(Ek)
ι // C0(E (1)k )⊕ C0(E (2)k ) // C0(E (12)k ) // 0.

One has, of course,

C0(E (i)k ) ∼= C0(Ek−1),
C0(E (12)k ) ∼= C0(Ek−2).

Moreover, the maps (5) induce maps of the long exact sequences cor-
responding to resolution at the edge a. In particular, we obtain a
commutative square

(6)

H i(C0(E0k ))

ι∗ ��

δ // H i+1/2(C0(E1k ))

ι∗��

H i(C0(E (1)0k ))
⊕

H i(C0(E (2)0k ))

δ⊕δ//
H i+1/2(C0(E (1)1k ))

⊕
H i+1/2(C0(E (2)1k )).

By the induction hypothesis, the bottom row satisfies δ ⊕ δ = 0,
while the left column of (6) is injective by our computation of the
0-resolutions (the two components omit the (k − 3)’rd and (k − 2)’nd
summands of F⊕k where F is the ground field, respectively). Since
the left column of (6) is injective, the top row then satisfies δ = 0,
as claimed. This concludes the proof of the Lemma and hence the
Theorem. �

4.5. Theorem. For k ≥ 3, we have

rankĤF (Σ(Lk)) = k,

while
det(Lk) = k − 2.

Proof: The computation of the determinant follows from Theorem 4.3
(since the determinant is, up to sign, the trace of BOS cohomology).
Since det(Lk) 6= 0, the BOS spectral sequence then applies, with the
E3-term given by Theorem 4.3. By sparsity, no differential is possible,
and hence the spectral sequence collapses to E3 in this case. �

Comment: Note that while Theorems 4.3, 4.5 do not provide examples
of non-collapse of the BOS spectral sequence, they exhibit interesting
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behavior in the sense of an “extension”: The BOS cohomology of Lk
has non-trivial elements in degrees 3/2 and 7/2, which are congruent
modulo 2.

4.6. Proposition. For all but finitely many values of k > 3, the link
Lk (knot when k is odd) is hyperbolic

Proof: The moves converting E3 to the mirror of the standard knot
projection of T (7, 3) can be made in such a way that the crossing x
corresponding to the edge e2 in Figure 3 is not involved in any Reide-
meister move. Form a link M3 by adding an unknotted link component
` to L3 encircling the crossing x. Using SnapPea, the link M3 is hyper-
bolic with volume 6.551743287888. Now Lk for k > 3 can be obtained
from M3 by performing hyperbolic Dehn filling on the link component
`. Because of this, all but finitely many of the links Lk are hyperbolic
by Thurston’s theorem [9] (see also [1], Section 3). �

Comment: The only example of k > 3 we know for which Lk is not
hyperbolic is k = 5. The knot L5 is actually the mirror image of T (8, 3).
The Jones polynomial of the mirror of Lk, k ≥ 3, is

t(k+9)/2(1 + t2 − t91 + tk−4

1 + t
).
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