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Abstract

We prove descent theorems for semiorthogonal decompositions using techniques from
derived algebraic geometry. Our methods allow us to capture more general filtrations of
derived categories and even marked filtrations, where one descends not only admissible
subcategories but also preferred objects.
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1 Introduction

The theory of semiorthogonal decompositions is a crucial tool in understanding derived
categories of schemes, especially derived categories of smooth proper schemes over fields.
This paper concerns the construction of new semiorthogonal decompositions from known
ones in various situations that involve “twists” or “descent”. This will be useful for future
explorations of the relationship between derived categories and rationality as studied in [3]
and [6].

Question 1.1 (Absolute descent). Suppose that G is a group scheme acting on a scheme X
and suppose that there is a semiorthogonal decomposition

Perf(X) ' 〈E0, . . . ,Er〉.

When does Perf([X/G]) admits a descended semiorthogonal decomposition?

Here [X/G] is the stack quotient of X by G. A sufficient condition on the action, namely
that it be upper triangular with respect to the semiorthogonal decomposition, was first
obtained by Elagin in [14].

Question 1.2 (Relative descent). Let X and Y be k-schemes for some field k and suppose
that X and Y become isomorphic over some separable extension l/k. If X admits a k-linear
semiorthogonal decomposition

Perf(X) ' 〈E0, . . . ,Er〉,
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then Perf(Yl) admits an l-linear semiorthogonal decomposition Perf(Yl) ' 〈(E0)l, . . . , (Er)l〉.1
When does this semiorthogonal decomposition on Yl descend to Y ?

For example, Bernardara showed [8] that Beilinson’s semiorthogonal decomposition of
the derived category of Perf(Pnk ) descends to Perf(Y ) if Y is the Severi–Brauer variety of a
central simple algebra of degree n+ 1 over k.

Note that Question 1.2 can be reduced to Question 1.1 by replacing l with its Galois
closure, but we will see that there is some advantage in treating the relative case separately. In
both cases, the philosophical answer is that the semiorthogonal decomposition should descend
as long as the group action or descent data preserves the semiorthogonal decomposition.

One of the goals of this paper is to make this intuition precise. In particular, we wanted
to understand why it is enough to check only 1-categorical information in the results of
Elagin [14], Auel–Bernardara [3], and Ballard–Duncan–McFaddin [6] when in principal one
has to glue higher homotopical objects, a process which requires higher-degree analogues of
the cocycle condition in general.

The starting point of our approach is the idea that a semiorthogonal decomposition
constitutes a special kind of filtration on the derived category. We will see that after
descending the filtration admissibility comes along for the ride.

Fix a base scheme S and let Cat be the stack2 which assigns to each affine SpecR→ S
the∞-category Cat(R) = CatR of small idempotent complete R-linear stable∞-categories.3

Now, fix a poset P and let FiltP be the stack of linear categories equipped with P -shaped
filtrations.

Theorem 1.3 (Filtrations, Theorem 2.17 and Proposition 2.19). Let P be a poset. The
prestack FiltP of P -shaped filtrations is a stack. Moreover, the forgetful functor FiltP → Cat
has discrete fibers.

The proof of Theorem 1.3 is rather formal, although it has important consequences for the
questions above. The next result is deeper. Let P be a filtered poset and let SodP ⊆ FiltP
be the subprestack of P -shaped semiorthogonal decompositions.

Theorem 1.4 (Semiorthogonal decompositions, Corollary 3.17). If P is a filtered poset, the
prestack SodP is a stack.

This theorem says that the only obstruction to descending a semiorthogonal decomposition
is descending the associated filtration. We call this the local nature of admissibility.

Using Theorems 1.3 and 1.4, we obtain complete answers to Questions 1.1 and 1.2.
Moreover, we can give results on descending individual objects in the pieces of semiorthogonal
decompositions.

Theorem 1.3 is proved in Section 2 and Theorem 1.4 in Section 3. The twisted Brauer
space perspective is developed in Section 4 and many examples are given in Section 5.

Previously, Elagin studied descent for semiorthogonal decompositions in [14], showing that
one could descend semiorthogonal decompositions of triangulated categories along certain
comonads. The key condition of Elagin’s main theorem is that the comonad should be upper

1In this paper, Perf(X) will denote the small idempotent complete stable∞-category of perfect complexes
of OX -modules on X. The homotopy category of Perf(X) is thus the usual triangulated category Perf(X)
of perfect complexes on X. When X is regular, noetherian, and quasi-separated, Perf(X) ' Db(X), the
bounded derived category of coherent sheaves on X, but in general these are different.

2In this paper our stacks are fppf stacks.
3We will work with stable ∞-categories instead of dg categories out of personal preference. The theory

could also be developed in the language of the equivalent theory of dg categories.
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triangular with respect to the semiorthogonal decomposition, meaning in other words that
the comonad respects the filtration coming from the semiorthogonal decomposition. Elagin’s
work was recently revisited by Shinder who gave a new proof [31]. A similar approach is
given in work of Bergh and Schnürer [7].

In practice, there are many cases where working algebraic geometers have established
descent for semiorthogonal decompositions or exceptional collections in interesting settings
by hand. We list some here. Historically, the first is Bernardara’s work mentioned above
on Severi–Brauer schemes [8] followed by Baek’s work [5] on twisted Grassmannians in
general. Perhaps the two most impressive works in this direction are the paper of Auel and
Bernardara on derived categories of del Pezzo varieties over general fields [3] and the work
of Ballard–Duncan–McFaddin on toric varieties [6]. In these the authors construct explicit
vector bundles generating their semiorthogonal collections. More more on the connection of
our work with this previous work, see Section 5.

Under the hood, our approach bears some similarity to the recent work of Scherotzke–
Sibilla–Talpo in [30] who prove that ∞-categories equipped with finite semiorthogonal
decompositions indexed by possibly varying index sets admit certain limits. In our work, the
indexing sets will be fixed.

The main ideas in this paper go back to 2013 when a first draft of the paper was produced
by the first author. However, at that time, Alexander Kuznetsov pointed out Elagin’s work
and it was decided not to pursue the project further. In the meantime, the problem of
descent for semiorthogonal decompositions has returned again and again and it seemed like
those early results were worth making public after all. This has been done here with many
simplifications and extensions.

Notation. Let S be the ∞-category of spaces and let Sp be the ∞-category of spectra. If
C is an ∞-category and x, y ∈ C, then MapC(x, y) denotes the mapping space from x to y
and, if C is stable, then MapC(x, y) denotes the mapping spectrum.

Conventions. In this paper, a prestack on a small ∞-category C will mean a functor
Cop → Ĉat∞ where Ĉat∞ is the∞-category of possibly large∞-categories. If τ is a topology
on C, by a τ-stack we mean a prestack which satisfies τ -descent. Functors of the form
Cop → S will be called presheaves and those that satisfy τ -descent are τ-sheaves. If X
is a presheaf on AffR, the category of affine schemes over a commutative ring R, there is
a symmetric monoidal stable ∞-category Perf(X) of perfect complexes on X defined as
limSpecS→X Perf(SpecS); see Example 2.3.
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2 The stack of filtrations and variants

In this section we prove that the∞-category of possibly marked filtered idempotent complete
stable ∞-categories forms an fppf sheaf.

2.1 Background on stable ∞-categories

We give a brief set of definitions and remarks about stable ∞-categories. For details, see [24,
Chapter 1].

Definition 2.1. (a) An ∞-category C is stable if it is pointed, admits finite limits and
finite colimits, and if the suspension functor Σ: C→ C is an equivalence.

(b) A functor F : C → D between two stable ∞-categories is exact if it preserves finite
limits or equivalently (for stable ∞-categories) finite colimits.

(c) An∞-category C is idempotent complete if every idempotent in C admits a splitting.

Remark 2.2. If C is a stable ∞-category, then the homotopy category Ho(C), which is just
an ordinary category, admits a canonical triangulated category structure. A functor F as in
(b) is exact if and only if the functor Ho(F ) : Ho(C) → Ho(D) is exact. Additionally, C is
idempotent complete if and only if Ho(C) is idempotent complete.

Example 2.3. (1) If R is a commutative ring, then D(R) and Perf(R) are a idempotent
complete stable ∞-category. In this case, Perf(R) ⊆ D(R) is the full subcategory of
compact objects, i.e., those objects M such that the functor HomD(R)(M,−) preserves
arbitrary coproducts, where D(R) = Ho(D(R)).

(2) If S is an algebraic stack, then we can define Perf(S) by right Kan extension. Namely,
Perf(S) is the value at S of the diagonal functor in the commutative diagram

Affop

��

Perf(−)
// Catperf

∞

P(Aff)op,

RPerf(−)
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where P(Aff) is the ∞-category of presheaves of spaces on Aff. Practically speaking,
we compute

Perf(S) = lim
SpecR→S

Perf(R),

although since Affop is not small, care needs to be taken to ensure that this limit exists
in Catperf

∞ . When S is quasi-compact and quasi-separated with quasi-affine diagonal,
for example [X/G] where G is an affine algebraic group acting on a quasicompact
quasiseparated scheme X, this limit does exist. Indeed, there is a cover U → S where
U is affine and where each U ×S · · · ×S U is quasicompact and quasiaffine. Then,
Perf(S) ' lim∆ Perf(Č(U)), where Č(U) is the Čech complex of U → S.

(3) The ∞-categories Sp of spectra and Spω of finite spectra are stable ∞-categories. The
former plays the role of D(S) while the latter plays the role of Perf(S), where S is the
sphere spectrum, the initial commutative ring in stable homotopy theory.
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(4) If C is a pretriangulated dg category, then there is a naturally associated stable
∞-category Ndg(C).

The theory of idempotent complete stable ∞-categories and exact functors is organized
into an ∞-category Catperf

∞ .4 Moreover, this ∞-category admits a natural symmetric
monoidal structure where, for example, if A and B are rings, then Perf(A)⊗Perf(Z)Perf(B) '
Perf(A⊗L

Z B), where A⊗L
Z B denotes the derived tensor product viewed for example as a

dg algebra.
If R is a commutative ring, then Perf(R) admits a natural symmetric monoidal structure

(which on the homotopy category gives the derived tensor product of R-modules), whence
we may view Perf(R) as a “highly-structured” commutative ring, more precisely an E∞-ring,
object in Catperf

∞ . We thus form categories of modules over them [24, Chapter 3] and define

CatR = ModPerf(R)(Catperf
∞ ).

The objects of CatR are R-linear idempotent complete stable ∞-categories. We will just
call these R-linear categories for simplicity. Note that CatR is equivalent to the theory of
idempotent complete stable ∞-categories and exact functors enriched in D(R).

Remark 2.4. We can also consider R-linear dg categories. There is a model structure on
the category dgcatR of R-linear dg categories where the weak equivalences are the Morita
equivalences: a functor C → E of dg categories is an equivalence if the induced functor
Ddg(C)→ Ddg(E) on dg module categories is an equivalence. The ∞-category associated to
this model category is equivalent to CatR.

The assignment R 7→ CatR can be given the structure of a presheaf

Cat : CAlg ' Affop → Ĉat∞

of large ∞-categories on the category Affop of affine schemes (over Z) with

Cat(SpecR) = Cat(R) = CatR.

We call this the prestack of linear categories. We can also work relative to a base
commutative ring R and restrict this to a presheaf on AffR = CAlgop

R , the category of affine
R-schemes.

Now, let S be an algebraic stack. We let CatS = Cat(S) be the value on S of the right

Kan extension of Cat : Affop → Ĉat∞ along the inclusion Affop → P(Aff)op. We will call
the objects of CatS simply OS-linear categories.

Warning 2.5. There is a canonical functor ModPerf(S)(Catperf
∞ ) → CatS . We warn the

reader that this functor is not always an equivalence. Algebraic stacks for which this is the
case are called 1-affine [16, Definition 1.3.7]. Examples of 1-affine algebraic stacks include

(a) quasi-compact quasi-separated schemes, or more generally

(b) quasi-compact quasi-separated algebraic spaces [16, Theorem 2.1.1], and even

4For technical purposes later, we will need to use that this admits a natural (∞, 2)-categorical structure.
Indeed, for two idempotent complete stable ∞-categories there is an idempotent complete stable ∞-category
Funex(C,D) of exact functors. The underlying ∞-groupoid (obtained by forgetting all non-invertible
natural transformations between exact functors) ιFunex(C,D) is naturally equivalent to the mapping space
Map

Cat
perf
∞

(C,D).
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(c) stack quotients of quasi-compact quasi-separated algebraic spaces by affine algebraic
groups of finite type [16, Theorem 2.2.2].

For many results in this paper we require that S is 1-affine so that we can view an OS-linear
category more concretely as a small idempotent complete stable ∞-category with extra
structure, namely with the structure of a Perf(S)-module structure. On the other hand,
defining CatS via right Kan extension has the advantage that it inherits descent properties
from its value on affine schemes; see [16, Theorem 1.5.7].

2.2 Filtrations on stable ∞-categories

We will work everywhere relative to a fixed poset.

Definition 2.6. A poset is a partially ordered set, i.e., a set P together with a binary
relation 6 satisfying the reflexivity, antisymmetry, and transitivity conditions. When we
say that an ∞-category is a poset, we mean that it is equivalent to the nerve of a poset.
Equivalently, a poset is an ∞-category C such that for each pair of objects x, y ∈ C, the
mapping space MapC(x, y) is either empty or contractible. We will make no notational
distinction between considering a poset P as an ordinary category or as an ∞-category. We
say that P is filtered if every finite set of elements of P has an upper bound.

Let P be a poset.

Example 2.7. For example, P could be

(i) the totally ordered set with n + 1 elements [n] = {0 < 1 < · · · < n} for an integer
n > 0 (this is filtered);

(ii) products such as [m] × [n], for integers m,n > 0, with the product partial order:
(i, j) 6 (l, k) if and only if i 6 l and j 6 k (this is not filtered);

(iii) N = {0, 1, 2, . . .} or Z with the usual total orders (these are filtered);

(iv) the set of finite subsets of a given set with the partial order given by set containment
(this is filtered).

Let S be a 1-affine algebraic stack. We will study P -shaped filtrations on OS-linear
categories.

Definition 2.8. The ∞-category FiltPCatS of P -shaped filtrations of OS-linear cat-
egories is the full subcategory of the functor category Fun(P,CatS) on those functors
F?C : P → CatS such that for p 6 q in P the induced map FpC→ FqC is fully faithful.5

Example 2.9. Evaluation at 0 gives an equivalence Filt[0]CatS → CatS .

In the previous definition, there is no ambient OS-linear category that is being filtered.

Definition 2.10. A P -shaped filtration on an O-linear category C is a P -shaped
filtration F?C equipped with a functor

F∞C = colim
P

F?C→ C

5Note that, by 1-affineness, a functor E → C of OS-linear categories is fully faithful if and only if
corresponding functor Ho(E)→ Ho(C) of triangulated homotopy categories is fully faithful.
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such that for each p ∈ P the induced functor FpC → C is fully faithful. If the functor
F∞C → C is moreover an equivalence, we say that the filtration is exhaustive. To give
an precise definition of the ∞-category of P -shaped filtrations on C, we first define the lax
pullback

FiltPCatS
−→×CatS∆0

as the pullback

FiltPCatS
−→×CatS∆0 //

��

(CatS)
∆1

��

(∂1,∂0)

��

FiltPCatS
(colimP ,C)

// CatS × CatS .

(1)

Thus, FiltPCatS
−→×CatS∆0 is the ∞-category consisting of pairs (F?C,C) of a P -shaped

filtration F?C, an OS-linear category C, and a functor colimP F?C→ C. We let

FiltCP ⊆ FiltPCatS
−→×CatS∆0

be the full subcategory where each induced functor FpC→ C is fully faithful. We let

ExFiltCP ⊆ FiltCP

be the full subcategory of exhaustive P -shaped filtrations on C.

Warning 2.11. Definition 2.10 is usually only a reasonable notion if P is filtered so that
the mapping spaces in C can be computed as a filtered colimit of mapping spaces in each
FpC; see [29] for a proof. In particular, a filtered colimit of fully faithful functors are fully
faithful.

Example 2.12. (a) A sequence F0C ⊆ F1C ⊆ · · · ⊆ FnC of n+ 1 full subcategories of C
defines an [n]-shaped filtration of C. It is exhaustive if and only if the last inclusion is
an equivalence FnC ' C.

(b) The Beilinson filtration on Perf(Pn) with FpPerf(Pn) = 〈O(0), . . . ,O(p)〉 gives an
exhaustive [n]-shaped filtration of Perf(Pn).

(c) Let X be a qcqs scheme. Let Z0 ⊆ Z1 ⊆ · · · be an N-indexed sequence of closed
subsets of X, each with quasi-compact complement. Then, Perf(X on Z?) defines an
N-shaped filtration on Perf(X). It is exhaustive if and only if each generic point of X
is contained in Zp for some finite p.

As we will see, the following simple lemma turns out to be the secret sauce.

Lemma 2.13. Let S be a 1-affine algebraic stack and let C be an OS-linear category. For
any poset P , the ∞-category FiltCP is a poset. In particular, ExFiltCP is a poset as well.

Proof. Let SubC ⊆ (CatR)/C be the full subcategory on the fully faithful inclusions. Then,

FiltCP ' Fun(P,SubC).

Since the ∞-category of functors from one poset to another forms a poset, it now suffices
to see that SubC is a poset. Let D0 and D1 be two full subcategories of C. There is a fiber
sequence

MapSubC(D0,D1)→ MapCatR(D0,D1)→ MapCatR(D0,C)
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of spaces, where the left hand term is the fiber over the fixed inclusion D0 ↪→ C. Since
D1 → C is fully faithful, the right map is an inclusion of connected components. Thus, the
fibers are either empty or contractible. Therefore, SubC is a poset. Hence, Fun(P,SubC) is a
poset, which is what we wanted to prove.

2.3 Marked filtrations

Marked filtrations are filtrations in which we also specify an object from each layer in the
filtration.

Definition 2.14. Let S be a 1-affine algebraic stack. Suppose that F?C→ C is a filtration
on an OS-linear category C. A marking of F?C→ C is the choice of an object Mp ∈ FpC
for each p ∈ P . The pair F?C→ C,M∗) will be called a marked P -shaped filtration on
C. A marked P -shaped filtration on C is called exhaustive if the underlying filtration is
exhaustive.

We will denote by MFiltCP (resp. MExFiltCP ) the ∞-category of marked (resp. marked
exhaustive) filtrations on C.

In contrast to Lemma 2.13, neither the ∞-category MExFiltCP nor MFiltCP is a poset in
general. For example, there is a natural equivalence MExFiltC[0] → ιC, where ιC is the space
of objects in C, given by taking the marked object.

Remark 2.15. There are many variants one can consider, for example by marking only
certain parts of the filtration, or by marking the quotients

FqC

FpC
for p 6 q. We leave it to the

reader to spell out the theory in these cases.

2.4 Descent for the stack of filtrations

Central to our results is following theorem which is essentially due to Jacob Lurie.

Theorem 2.16. The functor
Cat : Affop → Ĉat∞

satisfies fppf descent.

Proof. To begin with, for any commutative ring R, we have inclusions of subcategories

CatR ⊆ LinCatcg
R ⊆ LinCatst

R

where LinCatst
R = ModMod(R)(PrL) [26, Variant D.1.5.1] and LinCatcg

R is the full subcategory
of compactly generated objects [23, 5.5.7]. To explain the first inclusion, note that the
functor of taking ind-objects

Ind : CatR → LinCatst
R

factors through LinCatcg
R and identifies as the subcategory of LinCatst

R where the objects are
compactly generated but the functors are those which additionally preserve compact objects
(this holds by the R-linear version of [23, Proposition 5.5.7.10]).

Now, [26, Theorem D.3.6.2] implies that the functor R 7→ LinCatst
R is an fppf sheaf.

Indeed, loc. cit. proves that it is a sheaf with respect to the universal descent topology
which is finer than the fppf topology by [26, Proposition D.3.3.1] (the cardinality assumption
is trivially satisfied by morphisms of finite presentation). It then suffices to prove that
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(a) R 7→ LinCatcg
R is an fppf sheaf,

(b) for any ring R and a colimit-preserving functor F : C → D in LinCatcg
R if R → S is

a faithfully flat morphism of finite presentation, then if F ⊗R S preserves compact
objects, F does as well.

Indeed, we claim that the proof of [26, Theorem D.5.3.1.b] proves (a). Since R 7→ LinCatst
R

is an fppf sheaf, it suffices to prove that the property of being compactly generated is local
for the fppf topology. To this end, for each commutative ring R and C ∈ LinCatcg

R , define
the presheaf (on AffR)

χM (R′) =

{
∗ if C⊗S R′ is compactly generated

∅ otherwise.

The first half of the proof of [26, Theorem D.5.3.1(b)] shows that χM is an Nisnevich sheaf
on the small Nisnevich site6 for each R′, hence it is a Nisnevich sheaf on AffR

7.
Now (beginning at the end of page 2153), Lurie claims that it is sheaf for the finite étale

topology. However the argument proves that it is in fact a sheaf for the finite flat topology
since, in the notation of the proof, one only needs that B is finitely generated and projective
as an A-module. But now, finite flat descent and Nisnevich descent implies fppf descent by
[32, Tag 05WM] (see also [17, Corollaire 17.16.2]).

Now, we prove (b). Suppose that M ∈ C. Define the presheaf (on AffS)

χM (R′) =

{
∗ if F (M)⊗S R′ is compact and

∅ otherwise.

This makes sense as D → D ⊗R′ R′′ preserves compact objects for R′ → R′′ a map of
commutative R-algebras. Arguing as above, one proves that χM is an fppf sheaf. Now, the
functor C→ C⊗R S preserves compact objects, hence the composite C→ D⊗R S preserves
compact objects, whence χM (S) ' ∗ and thus χM (R) = ∗ by fppf descent. This proves (b)
and hence the theorem.

From this, we will prove that various prestacks classifying filtrations are actually fppf
stacks. Let us fix a quasicompact quasiseparated 1-affine algebraic stack S and an OS-linear
category C. We consider the prestacks

Affop
S → Ĉat∞

given by

(a) FiltP : SpecR 7→ FiltP (CatR),

(b) FiltCP : SpecR 7→ Filt
C⊗Perf(S)Perf(R)

P (CatR),

(c) ExFiltCP : R 7→ ExFilt
C⊗Perf(S)Perf(R)

P (CatR),

as well as their marked variants MFiltP ,MFiltCP and MExFiltCP .

6By the small Nisnevich site we mean the category of étale R-schemes ÉtR equipped with the Nisnevich
topology.

7One way to see this is that to be a Nisnevich sheaf, it suffices to check an excision condition involving
objects on the small Nisnevich site; see [4, Appendix A] for the most general statement.
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Theorem 2.17. Let P be a poset.

(i) The prestack FiltP satisfies fppf descent. Consequently, FiltCP and ExFiltCP also
satisfy fppf descent.

(ii) The prestack MFiltP satisfies fppf descent. Consequently, MFiltCP and MExFiltCP
also satisfy fppf descent.

Proof. To see part (i), note that the prestack SpecR 7→ Fun(P,Cat(R)) is an fppf stack since
it is the mapping prestack Fun(P,Cat), and because Cat is an fppf stack by Theorem 2.16. To
prove that FiltP ⊆ Fun(P,Cat) is an fppf stack, it is enough to show that if F?C : P → CatR
is a diagram which becomes a diagram of fully faithful maps after base changing along
a faithfully flat map S → T , then each FpC → FqC is already fully faithful. But, this
follows from the fact that mapping spaces themselves may be calculated flat locally. (See

for example [25, Corollary 6.11].) Similarly, the prestack Cat∆1

: SpecR 7→ Cat∆1

R is
Fun(∆1,Cat) and so defines an fppf stack. Since stacks are stable under pullbacks in

prestacks, we get that FiltCP ' FiltP ×Cat×Cat Cat∆1

is an fppf stack. The fact that
ExFiltCP is an fppf stack again follows from the fact that objects in CatS satisfy fppf descent
again by[25, Corollary 6.11]. Specifically, if colimP FpC→ C is fppf locally an equivalence,
then it is an equivalence. Indeed, set D = colimP FpC and fix a faithful flat map R → S.
Then, D ' lim∆ D ⊗Perf(R) Perf(S⊗R•+1) and C ' lim∆ C ⊗Perf(R) Perf(S⊗R•+1). The
natural transformation D⊗Perf(R) Perf(S⊗R•+1)→ C⊗Perf(R) Perf(S⊗R•+1) is a degree-wise
equivalence by hypothesis, thus it is an equivalence in the limit.

The prestack MFiltP is computed as pullback of prestacks

MFiltP

��

// FiltP

��∏
P Cat∗

∏
u
//
∏
P Cat.

Here, the right vertical arrow is induced by the inclusion of the vertices of P into P
and the bottom horizontal arrow forgets the base point. Since stacks are closed under
pullbacks and products in prestacks, we see that MFiltP is an fppf stack. The fact that
MFiltCP and MExFiltCP are fppf stacks follow by the same argument as for their unmarked
counterparts.

Remark 2.18. For any of the prestacks F appearing in Theorem 2.17, we obtain presheaves
by taking maximal subgroupoids. We will decorate the resulting presheaves by ιF. Then
Theorem 2.17 tells us that ιF are fppf sheaves since the formation of maximal subgroupoids
preserves limits.

By construction, there is canonical morphism of prestacks u : FiltP → Cat given by
taking the colimit.

Proposition 2.19. The fibers of u are posets.

Proof. This is an immediate consequence of Lemma 2.13 since the fiber over C is precisely
ExFiltCP .

Corollary 2.20. The sheaves of spaces ιFiltCP and ιExFiltCP are 0-truncated.

In other words, these are sheaves of sets.
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2.5 Filtrations on quotient stacks

As an application of our methods, we will prove the following result which is a version of a
theorem of Elagin in [14].

Theorem 2.21. Let P be a poset, S a qcqs scheme. Let G be a flat affine algebraic S-
group scheme of finite presentation and let X be a qcqs S-scheme with an action of G. Let
F?Perf(X)→ Perf(X) be a P -filtration. If G preserves the filtration on Perf(X), then there
is an induced filtration F?Perf([X/G])→ Perf([X/G]).

Thanks to Corollary 2.20, we will see that the Theorem 2.21 is a consequence of basic cov-
ering space theory. Let BG be the classifying stack [SpecS/G]. It is 1-affine by Warning 2.5.
Since Cat is an fppf stack by Theorem 2.16, there is a morphism of stacks8

BG→ Cat

classifying the G-action on Perf(X). Now, suppose that we have a P -filtration F?Perf(X)→
Perf(X). This is equivalent to giving a commutative diagram of stacks

∗ FiltP

BG Cat.

(2)

Lemma 2.22. A lift BG→ FiltP filling in the diagram (2) exists if and only if a lift in

π0AutFiltP (F?Perf(X)→ Perf(X))

G π0AutCat(Perf(X))

(3)

exists in the category of fppf sheaves of groups on AffS.

Proof. The “only if” direction is clear. Suppose that the filler in (3) exists. We may assume
that S = X. The horizontal arrows in (2) factor through the underlying sheaves of spaces so
we obtain a commutative diagram

∗ ιFiltP,F?Perf(X)→Perf(X)

BG ιCatPerf(X),

p (4)

where ιCatPerf(X) (resp. ιFiltP,F?Perf(X)→Perf(X)) denotes the connected component of
ιCat (resp. ιFiltP ) corresponding to the base point Perf(X) (resp. F?Perf(X)→ Perf(X))
so it suffices to solve this lifting problem. By Corollary 2.20, the right hand vertical map is
0-truncated and so covering space theory in the ∞-topos of fppf sheaves on AffS tells us that
the existence of a filler is assured if the map G→ π1(ιCatPerf(X),Perf(X)) factors through

p∗(π1(ιFiltP,F?Perf(X)→Perf(X),F?Perf(X)→ Perf(X))) ⊂ π1(ιCatPerf(X),Perf(X)).

This is exactly the existence of a lift as in (3).
8Here, we use that BG is the quotient stack in the fppf topology, following the conventions of [32, Tag

044O].
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Proof of Theorem 2.21. The statement of Theorem 2.21 asserts the existence of a filtration on
Perf([X/G]). The assumption guarantees by Lemma 2.22 that there is a point in FiltP (BG)
lying over Perf(X) ∈ Cat(BG). In other words, F?Perf(X)→ Perf(X) admits the structure
of a G-equivariant filtration. Now, applying homotopy G-fixed points, we obtain a filtration
(F?Perf(X))hG → Perf(X)hG ' Perf([X/G]), as desired.

Remark 2.23. Theorem 2.21 is somewhat surprising since a priori they involve manipulating
higher-categorical objects which usually involves an infinite list of coherent descent data.
The explanation that this is not necessary for filtrations is given by Lemma 2.13. This also
explains why Elagin in [14] could stay within the realm of triangulated categories which
usually does not interact well with descent problems.

3 Semiorthogonal decompositions

The previous sections dealt with general filtrations. Now, we deal with semiorthogonal
decompositions in the sense of [11]. In particular, we prove Theorem 1.4 via Theorem 3.12,
which says that a subcategory A ⊆ C is admissible if and only if it is fppf-locally admissible.

3.1 Admissibility

Let S be a 1-affine algebraic stack. We review in this section the definitions and standard
facts about admissible subcategories.

Definition 3.1 ([11]). Let A ⊆ C be a fully faithful inclusion of OS-linear categories. We say
that A is right-admissible in C if the inclusion admits an OS-linear right adjoint. Similarly,
A is left-admissible in C if the inclusion admits an OS-linear left adjoint. If the inclusion
admits both adjoints, we say that A ⊆ C is admissible.

Remark 3.2. In the case of greatest interest, C will be dualizable (i.e., smooth and proper)
as on OS-linear category in which case the three notions of admissibility for a full subcategory
A ⊆ C agree and are all furthermore equivalent to the smoothness of A.

Definition 3.3. If A ⊆ C is an inclusion of stable ∞-categories, then the left (resp. right)
orthogonal of A, denoted by ⊥A (resp. A⊥) is the full subcategory of C spanned by objects
y ∈ C such that MapC(y, x) (resp. MapC(x, y)) is contractible for all x ∈ A. If the ambient
stable ∞-category is ambiguous, we will write (⊥A)C (resp. (A⊥)C) to avoid confusion.

The next well-known proposition furnishes a list of checkable criteria for right-admissibility.

Proposition 3.4 ([11]). Let S be a 1-affine algebraic stack. Suppose that i : A ⊆ C is a fully
faithful OS-linear functor of OS-linear categories. Then, the following conditions on i are
equivalent.

(1) For every x in C there is a cofiber sequence y → x→ z where y ∈ A and z ∈ A⊥.

(2) There is a t-structure (C>0,C60) on C for which C>0 ' A.

(3) The functor i admits a right adjoint.

(4) The inclusion i′ : A⊥ ⊆ C admits a left adjoint.

(5) The composition A⊥
i′→ C→ C/A is an equivalence.
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Furthermore, the adjoints appearing in (3) and (4) are automatically OS-linear.

Proof. One reference for most of the implications is [11, Section 1], but we will sketch the
arguments for completeness. The implication (1)⇒ (2) is immediate from the definition of a
t-structure [9, Définition 1.3.1].9 The implication (2)⇒ (3) is given by [9, Proposition 1.3.3].
Let us prove that (3) and (4) are equivalent. Since i : A ↪→ C has a right adjoint R, we can
cook up an endofunctor of C by the formula

L : X 7→ cofib(iRX → X)

given by taking the counit of the adjunction. The functor L takes X to A⊥ since, for any
Y ∈ A we have a cofiber sequence

MapC(iY, iRX)→MapC(iY,X)→MapC(iY, LX)

where the first arrow is an equivalence, hence the last term is contractible. The check that
L is indeed the left adjoint is standard. Conversely, if L is a left adjoint to the inclusion
i′ : A⊥ → C, then we define the right adjoint as

R : X 7→ fib(X → i′LX).

A similar argument shows that R is right adjoint to i.
Now we prove that (4) implies (5). Let i0 denote the composition i0 : A⊥ → C→ C/A

and observe that the adjoint L : C → A⊥ of (4) vanishes on A and hence factors through
C/A to define a functor L0 : C/A→ A⊥ [27, Theorem 1.3.3(i)] which can be checked to be
the left adjoint to i0, and fits into the diagram

C A⊥

C/A .

L

L0

(5)

Since L and the projection C→ C/A are essentially surjective, it is easy to see that L0 is
as well. It remains to show that L0 is fully faithful. Suppose that X,Y ∈ C with images
X,Y ∈ C/A. Since (4) implies (3), the existence of a right adjoint to i tells us that the
filtered category A/Y admits a final object, namely, RY . From this we compute, using the
formula for mapping space in Verdier quotients [27, Theorem 1.3.3(ii)]

MapC/A(X,Y ) ' colim
Z∈A/LY

MapC(X, cofib(Z → Y ))

' MapC(X, cofib(iRY → Y ))

' MapC(X,LY )

' MapC/A(X,LY ).

This proves that (4) implies (5). Now (1) follows from (5) by the standard machinery of
Bousfield localization.

The fact that Perf(R) is rigid symmetric monoidal, meaning that every object is dualizable,
implies that the adjoints above, if they exist, are automatically R-linear; see for example [19,
Proposition 4.9(3)].

9Note that we are working with homological instead of cohomological indexing.
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Example 3.5. The requirement that an inclusion be right or left-admissible is very strong.
Let k be a field and let P1 = P1

k. If H is a hyperplane in P1 with complement U , then OH is
naturally an object of Perf(P1). Let 〈H〉 denote the thick k-linear subcategory of Perf(P1)
generated by OH . The quotient of Perf(P1) by 〈H〉 is Perf(U). However, it is clear that
there can be no fully faithful functor Perf(U)→ Perf(P1) because the mapping spectra in
Perf(P1) are perfect complexes.

3.2 Semiorthogonal decompositions

These were first introduced by Bondal [10] and Bondal–Kapranov [11]. We would like to
define semiorthogonal decompositions which are indexed not just by ∆n or Z but also by a
poset P . The next definition is a naive generalization of the definition that appears in [11,
Definition 4.1]:

Definition 3.6. Let C be an OS-linear category, let P be a poset, and consider a P -shaped
filtration F?C → C. We say that the filtration is admissible (resp. right-admissible,
left-admissible) if for every arrow p→ q in P the fully faithful embedding FpC ↪→ FqC is
admissible (resp. right-admissible, left-admissible).

We say that a right-admissible filtration is strongly admissible if

(1) the filtration is exhaustive and

(2) for each arrow p→ q in P , the subcategory

FqC

FpC
' (FpC)⊥FqC

⊆ FqC ⊆ C

is an admissible subcategory of C, where we used Proposition 3.4 in the first equivalence,
and

Any P -shaped filtration F?C → C which is a strongly admissible is called a P -shaped
semiorthogonal decomposition of C.

Remark 3.7. In practice, we will only use this definition when P is filtered and that
each FpC → C is fully faithful. Moreover, in this case, each FpC ⊆ C is admissible (resp.
right-admissible, left-admissible) as well by [11, Proposition 4.4].

We make a comparison between Definition 3.6 with a notion that appears in textbook
references (e.g. [20, Definition 1.59]), at least in the case of ∆n. See also [11, Proposition 4.4].

Proposition 3.8. Let C be an OS-linear category. Then the following data are equivalent:

(1) a ∆n-shaped semiorthogonal decomposition F?C of C.

(2) A collection of admissible small OS-linear full subcategories {Ci}06i6n such that

(a) for any i 6 j, MapC(cj , ci) ' 0 or all ci ∈ Ci, cj ∈ Cj, i.e., Ci ⊂ (Cj)
⊥ and

(b) the smallest stable subcategory containing the Ci’s is all of C.

Proof. It suffices to consider the case of n = 1. In this case, given a ∆1-shaped semiorthogonal
decomposition F0C ↪→ F1C ' C we can take the Verdier quotient F1C

F0C
which is canonically

equivalent to the right orthogonal of F0C in F1C by Proposition 3.4 ((3)⇒(5) direction) and is
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an admissible subcategory of C by assumption. So the collection of admissible subcategories
{F0C,

F1C
F0C
} satisfy 2(a). Since the filtration is assumed to be exhaustive, we get 2(b).

Now assume that we have a collection {C0,C1} as in (2). We define the filtration
C(?) := C0 → 〈C0,C1〉 where the 〈C0,C1〉 indicate the smallest stable ∞-category containing
both C0 and C1. Then the inclusion C0 → 〈C0,C1〉 has C1 as the Verdier quotient and
Proposition 3.4 ((5)⇒(3) direction) tells us the inclusion does have a right adjoint. The fact
that this filtration is exhaustive follows from 2(b), i.e., the equivalence 〈C0,C1〉 ' C.

Remark 3.9. If C be a stable ∞-category, we denote by K(C) the algebraic K-theory spec-
trum of C. A ∆n-shaped semiorthogonal decomposition C(?)→ C induces a decomposition

K(C) '
∏n
p=0 K(

FpC

Fp−1C
). However, for a general poset P such a decomposition on K-theory

is not guaranteed.

3.3 Marked variants

We also want to discuss marked variants of semiorthogonal decompositions. Of greatest
interest are markings by exceptional objects.

Definition 3.10. Suppose that C is a small OS-linear stable ∞-category. An exceptional
object of C is an object e ∈ C such that MapC(x, x) ' OS as an OS-algebra.10 In this case,
the thick OS-linear subcategory of C generated by x is equivalent to Perf(S).

Let P be a poset. A collection of objects {ep}p∈P of C is an exceptional sequence
if each ep is an exceptional object and if MapC(eq, ep) ' 0 for p < q. The exceptional
sequence is called full if the objects generate C as an OS-linear category. If R is an ordinary
commutative ring, then an exceptional sequence in an R-linear category is called strong if
HomC(ep, eq[n]) = 0 for n 6= 0 and all p, q ∈ P .

Definition 3.11. Let C be an OS-linear stable ∞-category. Then a marked P -shaped
filtration (F?C → C,M∗) is strongly admissible if the underlying filtration is strongly
admissible. If (F?C→ C,M∗) is strongly admissible, then we say that it is exceptional if
for each p ∈ P object Mp is exceptional and contained in (Fi−1C)⊥FiC

. We say that it is full
if the collection {Mp}p∈P is full.

3.4 The local nature of admissibility

We now prove the following result, which is the main technical theorem of the paper. If S is
an algebraic stack, C is an OS-linear category, and T → S is a morphism of algebraic stacks,
we let CT = Perf(T )⊗Perf(S) C.

Theorem 3.12. Let S be a 1-affine algebraic stack. Suppose that C is an OS-linear ∞-
category and let A ⊆ C be an OS-linear inclusion of a full subcategory. If U → S is an fppf
cover, then A→ C is right-admissible if and only if AU → CU is right-admissible. The same
holds for left-admissibility and admissibility.

The next proposition highlights the importance of working in an enhanced setting, as
opposed to just with triangulated categories. It states that the notion of right-admissibility
is stable under (derived) base change. This generalizes [22, Theorem 5.6].

10Here we abuse notation a little and view MapC(x, x) as a perfect complex on S.
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Proposition 3.13. Suppose that i : A ⊆ C are OS-linear categories, and assume that i is
right-admissible. If F is another OS-linear stable ∞-category, then

F ⊗ i : F ⊗Perf(S) A→ F ⊗Perf(S) C

is fully faithful and right-admissible. A similar statement holds for left-admissibility.

Proof. Let r : C→ A be the right adjoint to i. To say that r and i are adjoint is the same as
giving a natural transformation idA → r ◦ i such that for each a ∈ A and b ∈ C the induced
composition

ηa,b : MapC(i(a), b)→MapA(ri(a), r(b))→MapA(a, r(b))

is an equivalence. Moreover, if i and r are adjoint, i is fully faithful if and only if the unit
natural transformation is an equivalence.

Let iF : F ⊗Perf(S) A → F ⊗Perf(S) C and rF : A ⊗Perf(S) C → F ⊗Perf(S) A be the maps
induced by i and r by functoriality of the tensor product. We have an induced natural
isomorphism idF⊗Perf(S)A → rF ◦ iF (since idA ' r ◦ i). Thus, to prove the lemma, it is
enough to prove that iF and rF are adjoint, since then fully faithfulness then follows from
the discussion above.

Consider for a ∈ F ⊗Perf(S) A and b ∈ F ⊗Perf(S) C the induced map

MapF⊗C(iF(a), b)→MapF⊗A(rFiF(a), rF(b))→MapF⊗A(a, rF(b)). (6)

We would like to show that this is an equivalence. Suppose that a = x⊗ y and b = w ⊗ z
are pure tensors, i.e., x,w ∈ F, y ∈ A, and z ∈ C. Then, we find the map is equivalent to
MapF(x,w)⊗ ηy,z since, for example,

MapF⊗C(iF(x⊗ y), w⊗ z) 'MapF⊗C(x⊗ i(y), w⊗ z) 'MapF(x,w)⊗OY
MapC(i(y), z).

Since ηy,z is an equivalence, we see that (6) is an equivalence for pure tensors. Since the
pure tensors generate F ⊗Perf(S) A and F ⊗Perf(S) C, a standard thick subcategory argument
proves that (6) is an equivalence for all a ∈ F ⊗A and b ∈ F ⊗ C.

Proof of Theorem 3.12. The necessity of fppf local admissibility follows immediately from
the stability of admissibility under base change by Proposition 3.13 with F = Perf(U). It
suffices to prove the converse for right-admissibility, since A ⊆ C is left-admissible if and
only if Aop ⊆ Cop is right-admissible.

Let p : U → S be an fppf cover and assume that AU → CU admits a right adjoint R.
Let Č•(p)• be the simplicial algebraic stack obtained by taking the Čech complex of p; i.e.,
Čn(p) ∼= U×S(n+1). Taking Perf(Č•(p)) we obtain a cosimplicial OS-linear category with
Perf(Čn(p)) ' Perf(U×S(n+1)). Tensoring with the inclusion i : A→ C, we obtain a natural
transformation

AČ•(p) → CČ•(p)

of cosimplicial OS-linear categories.
For simplicity, write Un = U×S(n+1), the nth term in Č•(f). By Proposition 3.13, each

in : AUn
→ CUn

admits a right adjoint, say rn.
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Claim. For each q : [m]→ [n] in ∆, the commutative square

AUn

in //

q∗A
��

CUn

q∗C
��

AUm

im // CUm

is right adjointable, i.e., the induced natural transformation

q∗A ◦ rn → rm ◦ q∗C

is an equivalence.11 Indeed, this follows from Lemma 3.14 below.
To prove that i admits a right adjoint, it suffices to check the object-wise criterion to

be an adjoint by [23, 5.2.7.8]. Namely, it is enough to show that for each x ∈ C there
exists an element y ∈ A and a map y → x such that for each w ∈ A the natural map
MapA(w, y)→MapC(i(w), x) is an equivalence.

By unstraightening, we can view the functor AČ•(p) : ∆ → Cat(S) as classifying a
Cartesian fibration

Ã =

∫
∆

AČ•(p) → ∆op.

Given x ∈ C as above, the Beck–Chevalley transformations make r•x into a section r(x) of

Ã.12 In other words, r(x) is a kind of lax cosimplicial object. But, the claim above, that the
squares are right adjointable, implies that this section is in fact Cartesian. Thus, r(x) defines

an object of A, which is equivalent to the ∞-category of Cartesian sections of Ã → ∆op

by [23, Corollary 3.3.3.2].
We also have a map ir(x)→ x. Fix w ∈ A. We have

MapA(w, r(x)) ' lim
∆

MapAU•
(wU• , r

•(xU•))

' lim
∆

MapCU•
(ι•(wU•), xU•)

' MapC(i(w), x),

as desired.

11This natural transformation is called the Beck–Chevalley transformation and is constructed for example
in [24, Definition 4.7.4.13].

12One way to make this precise is to use the classifying 2-category of adjunctions, Adj. Specifically,
viewing Cat(S) as a 2-category where the mapping categories are the ∞-categories Funex(−,−) of exact
OS-linear functors, we have a forgetful functor Fun(Adj,Cat(S)) → Fun(∆1,Cat(S)), where on the left
Fun(Adj,Cat(S)) is the ∞-category of 2-categorical functors from Adj to Cat(S). We note that the
morphisms in Fun(Adj,Cat(S)) are exactly given by squares which are pointwise adjointable [15, Appendix
A]. Now, the theorem of Riehl–Verity [28] implies that this functor is fully faithful with essential image
exactly those objects of Fun(∆1,Cat(S)) possessing an adjoint. Now, we can view i as defining a functor
∆→ Fun(∆1,Cat(S)). The pointwise adjointability, implies that this functor factors through the subcategory

to give a functor ∆ → Fun(Adj,Cat(S)). If C̃ → ∆op denotes the unstraightening of CČ•(p), then this

functor gives a functor C̃ → Ã of ∞-categories over ∆op. The object x defines a (Cartesian) section of

C̃→ ∆op and we apply the functor to get a section of Ã→ ∆.
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Lemma 3.14. Suppose that f : U → S be a morphism of schemes. Let F : D → C be a
functor of S-linear categories and consider the diagram

D C

DU CU .

F

f∗D f∗C

FU

Assume that F admits a right adjoint G, then the square above is right adjointable.

Proof. Suppose that {yi} is a collection of objects in D which generates D. Then {yi ⊗ U}
generates DU . Hence to prove the claim, it suffices to prove that the canonical map

MapDU
(yi ⊗ U, f∗DGx)→MapDU

(yi ⊗ U,GUf∗Cx),

is an equivalence. This follows from the following computation

MapDU
(yi ⊗ U, f∗DGx) = MapDU

(yi ⊗ U,Gx⊗ U)

' MapD(yi, Gx)⊗ U
' MapC(Fyi, x)⊗ U
' MapCU

(FUyi, x⊗ U)

' MapDU
(yi ⊗ U,GUf∗Cx).

Here, the only nontrivial step is the equivalence in the second line which follows from the
same argument as in [2, Lemma 2.7].

Definition 3.15. Let P be a poset. We denote by SodP the subprestack of FiltP spanned
by those filtrations which are strongly admissible. We call the prestack SodP the stack of
P -shaped semiorthogonal decompositions.

Remark 3.16. Proposition 3.13 implies that SodP is indeed a prestack.

Now, we see that SodP is a stack, which proves Theorem 1.4.

Corollary 3.17. The prestack SodP is an fppf stack.

Proof. For each SpecR → S, we have an inclusion of connected components SodP (R) ⊆
FiltP (R). Since FiltP is an fppf stack by Theorem 2.17, it suffices to check the effectivity of
descent, which is precisely Theorem 3.12.

Corollary 3.18. Let P be a poset, S a qcqs scheme. Let G be a flat affine algebraic
S-group scheme of finite presentation and let X be a qcqs S-scheme with an action of G.
Suppose that Perf(X) admits a semiorthogonal decomposition F?C→ C. If G preserves the
filtration F?C→ C, then the induced filtration F?Perf([X/G])→ Perf([X/G]) is a P -shaped
semiorthogonal decomposition.

Proof. This follows immediately from Theorem 3.12 since X → [X/G] is an fppf cover.

Remark 3.19. Under the equivalence given by Proposition 3.8 between our form of
semiorthogonal decompositions and the usual form, Corollary 3.18 gives a very general
form of Elagin’s theorem.
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4 The twisted Brauer space for filtrations

We introduce in this section tools for constructing obstruction classes in cohomology attached
to filtrations.

4.1 Twisted Brauer spaces: recollections

Throughout, S will be a 1-affine algebraic stack and C will be an OS-linear category. The
twisted Brauer space of C is a topological space (or, really, simplicial set) BrC(S) whose
points classify idempotent complete S-linear stable ∞-categories D which are fppf locally on
S equivalent to C, i.e., a twisted form of C. Here are some salient features of twisted Brauer
spaces; we refer to [1] for proofs. Note that [1] treats the étale case; thanks to Theorem 2.16,
the same results work for the fppf analogue.

(i) If C = Perf(S), then BrC ' Br is the fppf version of the Brauer space considered
in [2, 34]; in particular

πiBr(S) ∼=


H1

fppf(S;Z)×H2
fppf(S;Gm) if i = 0,

H0
fppf(S;Z)×H1

fppf(S;Gm) if i = 1,

H0
fppf(S;Gm) if i = 2, and

0 otherwise,

where the higher homotopy groups are computed at the basepoint Perf(S) ∈ Br(S).13

(ii) There is a one-to-one correspondence between OS-linear equivalence classes of OS-linear
categories which are fppf locally equivalent to C and the elements of the set π0BrC(S).
Given a point D of BrC(S), the higher homotopy groups of the space BrC(S) are given
by

πi(BrC(S),D) ∼= πi−1AutD(S),

where AutD(S) is the space of derived OS-linear autoequivalences of D.

(iii) The space AutD(S) is the space of global sections of a sheaf of spaces AutD. If
S = SpecR is affine, then the higher homotopy groups of this space are well-understood:

πi−1AutD(S) ∼=

{
HH0(D/S)× i = 2,

HH2−i(D/S) i > 3,

where HH(D/S) denotes the Hochschild cohomology of D relative to S = SpecR. This
is a result of Toën’s [33, Corollary 1.6]. For non-affine S, one computes the space
AutD(S) via a local-global spectral sequence. Note that if D ' Perf(X) for some
scheme X, then HH2−i(D/S) = 0 for i > 3: schemes do not have non-zero negative
Hochschild cohomology groups.

(iv) the twisted Brauer space is the space of S-sections of an fppf sheaf

BrC : Sfppf → S.

13Recall Grothendieck’s theorem [18, Section 5,Théorème 11.7] that for a smooth affine group scheme G
the natural map Hs

ét(S,G)→ Hs
fppf(S,G) is an isomorphism for all s.



20 4.2 Twisted Brauer spaces for filtrations

Since every point of BrC is fppf-locally equivalent to C, the sheaf of spaces BrC is
connected as a sheaf of spaces. Thus, the twisted Brauer space is the classifying stack
of the sheaf of groups AutC, formalizing the way in which it classifies twisted forms of
C. Here, the sheaf of groups should be understood in the homotopical context: AutC is
like a sheaf of H-spaces and is precisely a sheaf of what are called grouplike A∞-spaces.
Using this perspective, one can often enumerate twisted forms using descent spectral
sequences; see [1] for some examples.

4.2 Twisted Brauer spaces for filtrations

We now consider a variant of twisted Brauer spaces where C is equipped with a filtration.

Definition 4.1. Let P be a poset and let F?C→ C be a P -shaped filtration on C. We let
BrF?C be the fppf sheafification of the corresponding point of ιFiltP . This is the twisted
Brauer space of the filtration F?C→ C.

Similarly, if (F?C→ C,M∗) is a marked P -shaped filtration, we let the twisted Brauer

space of the marked filtration Br(F?C,M∗) be the fppf sheafification of the corresponding
point in ιMFiltP .

Remark 4.2. We remark that setting Mi = 0 for all i ∈ P is equivalent to having no
markings on the filtration so that BrF?C ' Br(F?C,M∗) in this case.

By construction both BrF?C and Br(F?C,M∗) are fppf sheaves on the big site which, a
priori, take values in the∞-category of large spaces. We will see in fact that they are sheaves
of small spaces.

We record some basic properties of these gadgets bearing in mind Remark 4.2.

Proposition 4.3. Let S be a 1-affine algebraic stack, F?C→ C a P -shaped filtration, and
M∗ a marking for the filtration. The fppf sheaves Br(F?C,M∗) satisfy the following properties.

(a) For any qcqs S-scheme T , the space Br(F?C,M∗)(T ) is the space of marked filtered
idempotent complete T -linear stable ∞-categories (F?C, N∗) which are étale-locally
equivalent to (F?C⊗Perf(S) Perf(T ),M∗ ⊗OS

OT ).

(b) Let Aut(F?C,M∗) denote the sheaf of automorphisms of the marked P -filtered stable
∞-category defined by F?C→ C and M∗. There is a natural equivalence

BAut(F?,M∗) ' Br(F?,M∗)

of fppf sheaves.

(c) There are forgetful maps

Br(F?C,M∗)(T )→ BrF?C → BrC(T )

of fppf sheaves. A twisted form D of C giving a point of BrC(T ) lifts to BrF?C(T )

(resp. Br(F?C,M∗)(T )) if and only if the (marked) filtration on C descends to D

(d) The morphism of sheaves BrF?C → BrC is 0-truncated, i.e, the fibers are fppf sheaves
of sets.
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(e) On sheaves of fundamental groups, the inclusion

π1(BrF?C,F?C) ↪→ π1(BrC,C) ' π0(AutC),

corresponds to the inclusion of those automorphisms of C which preserve the filtration
F?C.

Proof. (a) Let G ⊂MFiltP be the subpresheaf classifying objects (F?D→ D,M∗) which

are fppf locally equivalent to (F?C → C,M∗). By definition of Br(F?CC,M∗) the map

Br(F?,M∗) →MFiltP factors through the inclusion of G. Furthermore, the subpresheaf
G is actually an fppf sheaf since the condition of a section of MFiltP being in G is fppf
local. Since, fppf locally, the map Br(F?C,M∗) → G is an equivalence on sections we get
an equivalence of fppf sheaves.

(b) We note that fppf sheaf of connected components π0(BAut(F?C,M∗)) is equivalent
to the terminal sheaf since, fppf locally, (F?C,M∗) is the only equivalence class of

objects. We thus have an inclusion of sheaves BAut(F?C,M∗) ↪→ Br(F?C,M∗) where the
former is the maximal subgroupoid of the full subcategory spanned by the global base
point, (F?C,M∗). Hence to prove the claimed equivalence it suffices to apply Ω to
both sides (which preserves sheaves). The resulting sheaf in both cases is the sheaf of
automorphisms Aut(F?C,M∗).

(c) This follows by definition.

(d) This follows from Lemma 2.13.

(e) Let the fiber BrF?C → BrC be denoted by F. From part (d), we have an exact sequence
of sheaves:

0 ' π2(F)→ π1(BrF?C,F?C) ↪→ π1(BrC,C) ' π0(AutC),

where the last isomorphism is [1, Lemma 2.5]. The claim then follows from (b) and
the definition of the forgetful maps.

Remark 4.4. Out of the above properties, property (d) is the most striking: it tells us that
in order to descend a filtration on C to a filtration on its twisted form the obstruction is purely
“discrete.” This explains how previous results on descent for semiorthogonal decompositions,
such as [14], [7], could avoid the subtleties of gluing higher categorical objects (such as
dg-categories); see Theorem 4.6 for a precise statement.

We also note the following simple corollary, which says that there are not too many
twisted forms.

Corollary 4.5. Br(F?C,M∗) is a sheaf of small spaces.

Proof. After Proposition 4.3(b), the argument is the same as in [1, Proposition 2.6].



22 4.3 Descending filtrations on twisted forms

4.3 Descending filtrations on twisted forms

We will use the language of twisted Brauer spaces to explain the following phenomena: to
check if filtrations on a scheme induces a compatible filtration on its twisted form one only
needs to check 1-categorical compatibilities. This leads to computability of the obstructions in
trying to descend semiorthogonal decompositions as illustrated in our examples in Section 5.

Theorem 4.6. Let S be a 1-affine algebraic stack. Suppose that X and Y are two qcqs
S-schemes. Let

F?Perf(X)→ Perf(X)

be a P -shaped filtration for some poset P . Assume further that

(i) there is a surjective fppf morphism T → S and an isomorphism α : YT → XT and

(ii) the induced filtration F?Perf(YT ) = α∗q∗F?Perf(X) on Perf(YT ) satisfies the cocycle
condition: if pi : YT×ST → YT are the two projections, then for each p ∈ P the
subcategories

p∗1FpPerf(YT ) and p∗2FpPerf(YT )

of Perf(YT×ST ) coincide.

Then, there is a filtration F?Perf(Y )→ Perf(Y ) and an equivalence of filtrations

(F?Perf(YT )→ Perf(YT )) ' (F?Perf(XT )→ Perf(XT )),

induced by α. Moreover, if F?Perf(X) is a P -shaped semiorthogonal decomposition of Perf(X),
then the induced filtration F?Perf(Y ) is a semiorthogonal decomposition of Perf(Y ).

Proof. By assumption, the S-scheme Y gives a global section βY : S → BrPerf(X). By
Proposition 4.3(c), we need to lift βY along the map BrF?Perf(X) → BrPerf(X). We denote

by FβY
the fiber of BrF?Perf(X) → BrPerf(X) over βY , which is an fppf sheaf on SchY which

is naturally equivalent to Filt
C⊗Perf(X)Perf(Y )

P . We proceed to construct a section of the
canonical map FβY

→ Y . But, by Proposition 4.3(d) (or Lemma 2.13) the sheaf FβY
is an

fppf sheaf of sets, hence the hypothesis in (ii) suffices to construct the desired section. The
final claim follows from Theorem 3.12.

5 Examples

In many good situations, we have a fiber sequence

BrF?C → BrC → BG,

of sheaves where, by Proposition 4.3(d), G is actually a discrete group. Furthermore,
Proposition 4.3(e) in conjunction with known computations of the homotopy automorphisms
of Perf(S) will let us compute G. In these cases, we get a theory of characteristic classes
for filtrations — to a twisted form D of C on S we get a class o(C(?)) ∈ H1

fppf(S,G)
whose vanishing controls whether or not we obtain a filtration on D compatible fppf-locally
equivalent to F?C. We will illustrate how this works in this section.
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5.1 From Beilinson to Bernardara

Let ∆n be the poset {0 → 1 → · · · → i → · · ·n}. Beilinson’s description of the derived
category of PnS gives a ∆n-shaped filtration of Perf(PnS) with

i 7→ FiPerf(PnS) = 〈O,O(1), . . . ,O(i)〉.

We call this the Beilinson filtration.

Lemma 5.1. There is a fiber sequence

BrF?Perf(Pn
S) → BrPerf(Pn

S) → BZ

of fppf sheaves of spaces on S.

Proof. Since, by a result of Bondal and Orlov [12, Theorem 3.1], we know the homotopy
automorphisms of Perf(PnS) the sheaf of automorphisms of Perf(PnS) has homotopy sheaves

πiAutPerf(Pn
S)
∼=


PGLn+1×Z× PicPn/S if i = 0,

Gm if i = 1, and

0 otherwise.

Here, PGLn+1 acts by automorphisms of the S-scheme PnS , the group Z acts by suspension
F 7→ F[1] in Perf(PnS), and the relative Picard scheme PicPn/S

∼= Z acts by tensoring with line
bundles. Similarly, for the Beilinson filtration F?Perf(PnS), the sheaf of automorphisms is the
subsheaf of groups on the connected components that preserve filtration. By Proposition 4.3.e,
this eliminates only the non-zero elements of PicPn/S since they do not preserve the Beilinson
filtration. Thus, AutF?Perf(Pn) has homotopy sheaves

πiAutF?Perf(Pn
S)
∼=


PGLn+1×Z if i = 0,

Gm if i = 1, and

0 otherwise.

It follows that there is a fiber sequence

AutF?Perf(Pn) → AutPerfPn → Z,

and this sequence deloops to give a fiber sequence as claimed.

The next theorem generalizes the main result of [8].

Theorem 5.2. Let S be a qcqs 1-affine algebraic stack and let P → S be a Severi–Brauer
scheme associated to an Azumaya A of degree (n+ 1) with Brauer class α. There exists a
natural semiorthogonal decomposition

Perf(P ) ' 〈Perf(S),Perf(S, α), · · · ,Perf(S, α⊗n)〉.

Proof. Let f : S → BrPerf(Pn
X) classify Perf(P ). By Lemma 5.1, to descend the Beilinson

filtration to Perf(P ), it suffices to prove that the composite S → BZ is null. But f

factors through the map BPGLn+1 → BrPerf(Pn
X) which classifies Perf of the universal

PGLn+1-torsor. It suffices to prove that

H1
fppf(BPGLn+1;Z) = 0
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in the case where S = SpecZ. We may use the spectral sequence

Est1 = Hs
fppf(PGL×tn+1,Z)⇒ Hs+t

fppf(BPGLn+1,Z)

associated to the simplicial scheme

∗ PGLn+1 PGLn+1×PGLn+1 · · · ,

to compute fppf cohomology. The only groups that might contribute to H1
fppf(BPGLn+1,Z)

from the E1-page are E0,1
1 = H0

fppf(PGLn+1;Z) and E1,0
1 = H1

fppf(∗;Z) = 0. The latter is

zero since ∗ = SpecZ is normal (see [13, 2.1]). On the other hand, H0
fppf(PGLn+1,Z) ∼= Z.

Now, in low degrees, the d1-differentials give a complex

E0,0
1 → E0,1

1 → E0,2
1

and the cohomology in the middle term is E0,1
2 . One can check easily that this complex

is isomorphic to Z
0−→ Z

∼=−→ Z. Hence, E0,1
2 = 0 so that H1

fppf(BPGLn+1,Z) = 0. This
proves that we can descend the Beilinson filtration to obtain a ∆n-shaped semiorthogonal
decomposition F?Perf(P ) of Perf(P ).

Each graded piece
FpPerf(P )

Fp−1Perf(P )

is a twisted form of Perf(S) and thus of the form Perf(S, βp) for some βp. To complete
the theorem, it suffices to see that βp = α⊗p. But, we see by reducing to the universal
case S = SpecZ that βp = α⊗ap for some ap and then we can find ap = p, for example by
referring to Bernardara [8].

5.2 Marking the Beilinson filtration

Now consider the marked version of (i), where we mark FpPerf(Pn) by O(p). We can in

fact describe the sheaf Br(F?Perf(Pn),O(∗)). To do so, consider the maximal torus TPGLn+1
of

PGLn+1.

Proposition 5.3. (i) We have an equivalence of sheaves

Br(F?Perf(Pn),O(∗)) ' BG,

where G is a central extension of PGLn+1 by its maximal torus, i.e., we have an exact
sequence of groups

1→ TPGLn+1
→ G→ PGLn+1 → 1

and TPGLn+1
is in the center of G.

(ii) If (F?D,M∗) is a twisted form of (F?Perf(Pn),O(∗)), then F?D is equivalent to the
Beilinson filtration on Perf(P ) for some Severi–Brauer scheme P → S associated to a
degree (n+ 1) Azumaya algebra.

(ii) If P → S is a Severi–Brauer scheme associated to a degree (n+ 1) Azumaya algebra A

on S, then F?Perf(P ) ∈ π0BrF?Perf(Pn)(S) lifts to π0Br(F?Perf(Pn),O(∗)) if and only if
A ∼= End(V) for some vector bundle V on S.
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Proof. By construction, there is a fiber sequence

Aut(F?Perf(Pn),O(∗)) → AutF?Perf(Pn) →
∏

06p6n

ιFpPerf(Pn)

of sheaves of spaces where the right map sends a filtered automorphism ϕ to the (n+ 1)-tuple
(ϕ(O(0)), . . . , ϕ(O(n))). The left-hand term is the fiber over (O(0), . . . ,O(n)). It follows that
there is an exact sequence (of sheaves of abelian groups)

0→ π1Aut(F?Perf(Pn),O(∗)) → π1AutF?Perf(Pn)
a−→

∏
06p6n

Gm

→ π0Aut(F?Perf(Pn),O(∗))
b−→ π0AutF?Perf(Pn).

We already know that π1AutF?Perf(Pn)
∼= Gm, which appears as the natural automorphisms

of the identity on Perf(Pn). These natural isomorphisms of Perf(Pn) act as Gm on each
O(p). Thus, the map a in the diagram is the diagonal embedding of Gm in

∏
06p6nGm. It

follows that π1Aut(F?Perf(Pn),O(∗)) = 0. We also can see directly that the image of the map b
in π0AutF?Perf(Pn)

∼= PGLn+1×Z is PGLn+1 since the copy of Z appears as the suspension
operation on Perf(Pn) which does not preserve the marking. This proves part (i).

For part (ii), we see from the map G → PGLn+1 that any twisted form (F?D, N∗) of
(F?Perf(Pn),O(∗)) has the property that F?D is equivalent to the Beilinson filtration on a
Severi–Brauer scheme P → S for a degree (n+ 1) Azumaya algebra over S.

Using the exact sequence 1 → TPGLn+1
→ G → PGLn+1 → 1, we see that a lift of

a class P ∈ H1
fppf(S,PGLn+1) to H1

fppf(S,G) exists if and only if the obstruction class

ob(P ) ∈ H2
fppf(S, TPGLn+1

) vanishes. We leave it to the reader to check that under the

natural isomorphism
∏

0<p6nGm
∼= TPGLn+1

the obstruction class of P is (α, α⊗2, . . . , α⊗n).
Thus, a lift exists if and only if the Azumaya algebra A has trivial Brauer class, which
happens if and only if A ∼= End(V) for some vector bundle V, which is what we wanted to
prove.

In particular, we recover the well-known fact that if the marked filtration descends to the
Severi–Brauer variety of an Azumaya algebra A, then A is the sheaf of endomorphisms of a
vector bundle.

5.3 Involution surfaces

Now we study twisted forms of P1 × P1.

Definition 5.4. An involution surface is an S-scheme X which is fppf-locally isomorphic
to P1

S ×S P1
S .

Involution surfaces are classified by pairs (T,A) consisting of a Z/2-Galois extension
T of S and a quaternion Azumaya algebra A over T . The associated surface X(T,A) is
ReT/SSB(A), the Weil restriction from T to S of the Severi–Brauer variety of A. See [3,
Example 3.3] or [21, Section 15.B].

Example 5.5. If the quadratic extension T is split, then T = S
∐
S and A = A1 × A2,

where A1 and A2 are quaternion Azumaya algebras over S. In this case, X(T,A) ∼=
SB(A1)× SB(A2), the product of the Severi–Brauer schemes of A1 and A2.
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Since P1 × P1 is the zero-locus of a quadric form in four variables, its automorphism
group is the smooth algebraic group PO4. Now, note that there is a natural inclusion

PGL2 ×PGL2 ↪→ PO4

which extends to an exact sequence

0→ PGL2 ×PGL2 → PO4 → Z/2→ 0.

In nonabelian cohomology, the map H1(Spec k,PO4) → H1(Spec k,Z/2) classifies the
quadratic extension ` and if ` is trivial, then the fibers give the pairs D1 and D2 as
in Example 5.5.

The Picard scheme PicP1×P1/S is discrete and isomorphic to the constant sheaf Z2. We
let O(i, j) = p∗1O(i)⊗ p∗2O(j), where p1 is projection onto the first factor and p2 projection
onto the second factor. These give all isomorphism classes of line bundles on P1 × P1 if S
is the spectrum of a field. By the theorem of Bondal and Orlov [12, Theorem 3.1], which
applies since the canonical class of P1 × P1 is antiample, it follows that there is an exact
sequence

0→ Z×Z⊕2 → π0AutPerf(P1×P1) → PO4 → 0.

The rank three kernel corresponds to tensoring with line bundles and with translation in the
derived category.

Now, consider the following two filtrations on Perf(P1 × P1). First is ∆1 ×∆1-shaped
filtration F?Perf(P1 × P1) corresponding to the admissible subcategories

〈O(0, 0),O(0, 1)〉� x

**

〈O(0, 0)〉� u

''

) 	

77

〈(O(0, 0),O(0, 1),O(1, 0),O(1, 1)〉

〈O(0, 0),O(1, 0)〉
& �

44

The second is the ∆2-shaped filtration G?Perf(P1×P1) corresponding to the semiorthogonal
decomposition

〈O(0, 0),O(0, 1)⊕ O(1, 0),O(1, 1)〉.
There is a natural map F?Perf(P1×P1)→ G?Perf(P1×P1) over the collapse map ∆1×∆1 →
∆2 which sends the vertices (0, 1) and (1, 0) to 1.

Now, we consider the maps

BrF? → BrG? → BrP
1×P1

,

where we have made the evident abbreviations to cut down on notation.

Proposition 5.6. (a) The sequence BrG? → BrP
1×P1

→ Z⊕2 is a fiber equivalence. If
X is any involution surface, the filtration G?Perf(P1 × P1) descends to Perf(X).

(b) The map BrF? → BrG? is a Z/2-torsor. Thus, if G?D is a twisted form of G?Perf(P1×
P1), there is a canonical obstruction class o ∈ H1

fppf(S,Z/2) which vanishes if and only

if the filtration G?D can be refined to a filtration F?D which is a twist of F?Perf(P1 ×
P1).
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Proof. We leave the proof to the reader who should follow the lines of the proof of Theorem 5.2.

In general, if X is an involution surface over S, the obstruction class H1
fppf(S,Z/2)

associated to the problem of lifting the canonical filtration G?Perf(X) to F?Perf(X) is
precisely the class of T → S. See [3].

5.4 Descending exceptional blocks

We want to explain how to prove the main descent theorem of Ballard–Duncan–McFaddin
in the language of this paper (see [6, Theorem 2.15]).

Let E be an OS-linear category with a P -shaped full exceptional collection {ep}p∈P .
Suppose that a group G acts on E. We say that the full exceptional collection is G-stable if
for each g ∈ G and ep the object g · ep is in {ep}p∈P .

Theorem 5.7 ([6]). Let X be a smooth proper S-scheme, T → S a G-Galois fppf cover,
ET ⊆ Perf(XT ) an admissible OT -linear subcategory with a G-stable P -shaped full exceptional
collection {ep}p∈P . Then, E` descends to E ⊆ Perf(X) and E admits a full exceptional
collection.

Proof. By hypothesis, G preserves ET so it descends to E ⊆ Perf(X) by Theorem 4.6.
Arguing as in [6, Lemma 2.12], the G-orbits of the objects of {ep}p∈P are in fact orthogonal
exceptional objects. We can assume that {ep}p∈P is in fact a single G-orbit, which is
orthogonal. But, then, E ' Perf(T )n. The descended version is then a twisted form of
Perf(S)n. Any such admits a full exceptional collection for example by [3, Theorem 2.16] or
by using the twisted Brauer space.

With more work one can descend individual vector bundles by using markings. We leave
this to the reader.
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