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“In our acquisition of knowledge of the
Universe (whether mathematical or
otherwise) that which renovates the
quest is nothing more nor less than
complete innocence.” - A. Grothendieck.

1. References

1.1. Books. In principle, this class is about Grothendieck’s [EGA1] which signals the birth of
modern algebraic geometry. It is an extremely technical document on its own and shows one
of the many ways mathematics was developed organically. The French is not too hard and
I recommend that you look through the book before the start of class — I might also assign
readings from here occasionally with the promise that the French (and some Google translate)
will not hinder your mathematical understanding.
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2 E. ELMANTO

Here are some textbooks in algebraic geometry.

([Sha13]) Shafarevich’s book is a little more old school than the others in this list, but is valuable
in the examples it gives.

([Har77]) Hartshorne’s book has long been the “gold-standard” for algebraic geometry textbook.
I learned the subject from this book first. It is terse and has plenty of good exercises
and problems. However, the point of view that this book takes will be substantially
different from one we will take in this class, though I will most definitely steal problems
from here.

([GW10]) This is essentially a translation of Grothendieck’s EGA (plus more) and is closer to the
point of view of this class. Just like the original text, it is relentlessly general and
very lucid in its exposition.

([Vak]) Arguably the most inviting book in this list, and modern in its outlook.
([DG80]) As far as I know this is still the only textbook reference to the functor-of-points point

of view to algebraic geometry.

1.2. Lecture Notes. There are also several class notes online in algebraic geometry. I will add
on to this list as the class progresses.

([Ras]) This is the closest document to our approach to this class. In fact, I will often present
directly from these notes.

([Gat]) This is a “varieties” class, so the approach is very different, but I find it very helpful
for lots of examples.

1.3. Online textbooks. There has been an explosion of online textbooks for algebraic geom-
etry recently, though they are perhaps they are more like ”encyclopedias.”

([Stacks]) Johan de Jong at Columbia was the trailblazer in this industry and most, if not all,
facts about algebraic geometry that will be taught will appear here, with proofs.

([cri]) Similar but for commutative algebra. Much more incomplete.
([fpp]) A translation project for EGA.

2. Lecture 1: What is algebraic geometry?

In its essence, algebraic geometry is the study of solutions to polynomial equations. What
one means by “polynomial equations,” however, has changed drastically throughout the latter
part of the 20th century. To meet the demands in making constructions, ideas and theorems
in classical algebraic geometry rigorous has given birth to a slew of techniques and ideas which
are applicable to a much, much broader range of mathematical situations.

To begin with, let us recall the famous Fermat problem:

Theorem 2.0.1 (Taylor-Wiles). Let n > 3, then xn + yn = 1 has no solutions over Q when
x, y 6= 0.

This is a problem in algebraic geometry. In the language that we will learn in this class, we
will be able to associate a smooth, projective scheme Fern which is, informally, given by a
homogeneous polynomial equation xn + yn = zn, equipped with a canonical morphism

Fern

Spec Z,

such that its set of sections

Fern

Spec Z,
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correspond to potential solutions to the Fermat equation. It is in this language that the Fermat
problem was eventually solved.

The point-of-view we wish to adopt in this class, however, is one that goes by functor-of-
points. In this highly abstract, but more flexible, approach schemes appear as what they are
supposed to be which is often easier to think about. For us, the basic definition is:

Definition 2.0.2. A prestack is a functor from the category of commutative rings to sets:

F : CAlg→ Set.

Remark 2.0.3. A note on terminology: this is non-standard. What should be called (and was
called by Grothendieck) a prestack is a functor

F : CAlg→ Cat,

where Cat is the (large, (2, 1)-)category of small categories. If we think of a set as a category
with no non-trivial morphisms between the objects, then the above definition is a special case of
this Grothendieck definition of a prestack. We will not consider functors into categories in this
class so we will reserve the term prestack for such a functor above (as opposed to something
like “a prestack in sets”). Perhaps it should be called a presheaf, but a presheaf should really
just be an arbitrary functor

F : Dop → Set.

To make this definition jibe with the Fermat scheme above, let us note that the equation
xn + yn = 1 is defined for any ring. Therefore we can define

F̃ern(R) = {(a, b, c) : an + bn = 1} ⊂ R×2.

The theorem of Taylor and Wiles can then be restated as the fact that

F̃ern(Z) = ∅ n > 3;

However we caution that this is not the same as the scheme Fern that we have alluded to above
since it is not projective — something that we will address in the class.

Another key idea in algebraic geometry is the question of parametrizing solutions of poly-

nomial equations in a reasonable way. Let us consider F̃er2, which is the set of solutions to
x2 + y2 = 1. We have a canonical equality (the first one is more or less the same as the above):

F̃er2(R) = S1,

as we all know. Here are three other possible answers:

(1) F̃er2(R) = (cos θ, sin θ) 0 6 θ < 2π,

(2) F̃er2(R) = (1−t2
1+t2 ,

2t
1+t2 ) t ∈ R,

(3) F̃er2(R) is the set of all triangles with hypotenuse 1 up to congruence.

The first answer does not belong to the realm of (conventional) algebraic geometry which, by
its very nature, concerns only polynomial functions. In other words, we dismiss transcendentals
like exp and cos, sin. However the language of this class is actually powerful enough to capture
transcendentals and reconstruct the familiar theory of differential geometry. The third answer
will turn out to belong to the realm of algebraic geometry as well, but that will be reserved
for a second course. The second answer does belong to the realm of algebraic geometry that
we will study in this class: we can use rational functions of one variable in order to describe
Fer2(R). In fact, this parametrization proves

Theorem 2.0.4. A quadric hypersurface in P2 with a rational point is rational. In fact, any
quadric hypersurface with a rational point is rational.

The proof of this result is “basically known” to pre-Grothendieck algebraic geometers: we
pick the rational point and stereographcially project into a hyperplane. Since a quadric means
that it is cut out by a degree two polynomial, it must hit one other point. This defines a
rational map — one that is defined “almost everywhere” which is evidently an “isomorphism.”
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One of the major thread of investigation in algebraic geometry and comes under the name of
birational geometry and the above result belongs to this area. An example of a beautiful
result that belongs to modern birational geometry is:

Theorem 2.0.5 (Clemens and Griffiths). A nonsingular cubic threefold over C is not rational.

Theorem 2.0.5 is a non-existence proof — it says that there is no way to “rationally param-
etrize” the cubic threefold. If you have been trained in algebraic topology, you will feel like
some kind of cohomological methods would be needed. The words that you should look for are
“intermediate Jacobians,” an object whose real birthplace is Hodge theory.

One of the major, open problems in the subject is:

Question 2.0.6. Is a generic cubic fourfold over C rational?

Recently, Katzarkov, Kontesvich and Pantev claimed to have made substantial progress
towards this problem, but a write-up is yet to appear. More generally, a central question in
algebraic geometry is:

Question 2.0.7. How does one classify algebraic varieties up to birational equivalence?

In topology, recall that a topological (closed) surface can be classified by genus or, better,
Euler charateristic:

(1) if χ(Σ) < 0, then Σ must be the Riemann sphere,
(2) if χ(Σ) = 0 then Σ must be a torus — in the terminology of this class it is an elliptic

curve,
(3) most surfaces have χ(Σ) > 0 and they are, in some sense, the “generic situation.”

This kind of trichotomy can be extended to higher dimensional varieties (topological surfaces
being a 1-dimensional algebraic variety over C). The minimal model program seeks to find
“preferred” representatives in each class.

2.1. Algebraic geometry beyond algebraic geometry. The field of birational geometry is
extremely large and remains an active area of research. But classifying algebraic varieties is not
the only thing that algebraic geometry is good for. We have seen how it can be used to phrase
the Fermat problem and eventually hosts its solution. There are other areas where algebraic
geometry has proven to be the optimal “hosts” for problems.

One of the most prominent areas is representation theory where the central definition is very
simple a group homomorphism

ρ : G→ GL(V).

If we are interested in representations valued in k-vector spaces, then the collection of all
G-representations form a category called Repk(G). This category has an algebro-geometric in-
carnation: it is the category of quasicoherent sheaves over the an algebro-geometric gadget
called a algebraic stack (in this case, denoted by BG) which is a special, more manageable
class of prestacks but are slightly more mysterious gadgets than just algebraic varieties. Quasi-
coherent sheaves are fancy versions of vector bundles — they include gadgets whose fibers “can
jump” although we will study restrictions on how exactly they jump. In any case, the field of
geometric representation theory takes as starting point that representation theory is “just”
the study of the geometric object BG and brings to bear the tools of algebraic geometry onto
representation theory.

We have seen that algebraic geometry hosts number theory through the problem of the
existence of rational points on a variety. Another deep problem of number theory that lives
within modern algebraic geometry is the Riemann hypothesis. In algebro-geometric terms it
can be viewed as a way to assemble solutions of an equation over fields of different characteristics.

Soon we will learn what it means for a morphism of schemes f : X→ Spec Z to be proper
and for X to be regular, geometrically connected and dimension d. To this set-up we
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can associate the Hasse-Weil zeta function:

ζX(s) :=
∏
x∈|X|

(1− ](κ(x))−s)−1.

where:

(1) the set |X| is the set of closed points of X,
(2) κ(x) is the residue field of x which is a finite extension of Fp for some prime p > 0.

This function is expected to be extending to all of the complex numbers (as a meromorphic
function). There is a version ζX(s) which takes into account the “analytic part” of X as well:

Conjecture 2.1.1 (Generalized Riemann hypothesis). If s ∈ C is a zero of ζX(s) then:

2Re(s) = ν,

where ν ∈ [0, 2d].

One of the more viable approaches to verifying the generalized Riemann hypothesis is via
cohomological methods — one would like to find a cohomology theory for schemes to which
one can “extract” in a natural way the Hasse-Weil zeta function. One reason why one might
expect this is the (also conjectured) functional equation

ζX(s) ∼ ζX(dim(X)− s)
where ∼ indicates “up to some constant.” This is a manifestation of a certain Poincaré duality
in this cohomology theory which witnesses a certain symmetry between the cohomology groups
and governed by the dimension of X. If X is concentrated at a single prime, then the Riemann
hypothesis was proved by Deligne using étale cohomology. Recent work of Hesselholt, Bhatt,
Morrow and Scholze have made some breakthrough towards setting up this cohomology theory
but the Riemann hypothesis is, to the instructor’s knowledge, still out of reach.

2.1.2. Problem Set 1: categorical preliminaries. Here is a standard definition. We assume that
every category in sight is locally small so that Hom(x, y) is a set, while the set of objects,
Obj(C), is not necessarily a set (so only a proper class).

Definition 2.1.3. A functor F : C→ D is fully faithful if for all x, y ∈ C, the canonical map

Hom(x, y)→ Hom(Fx,Fy)

is an isomorphism. We say that it is conservative if it reflects isomorphisms: an arrow
f : c→ c′ in C is an isomorphism if and onnly if F(f) : F(c)→ F(c′) is.

Exercise 2.1.4. Let
F : C� D : G

be an adjunction (in these notes we always write the left adjoint on the left). Prove

(1) F preserves all colimits,
(2) G preserves all limits,
(3) The functor F is fully faithful if and only if the unit transformation

id→ G ◦ F

is an isomorphism.
(4) F : C → D is an equivalence of categories if and only if F is fully faithful and G is

conservative.

Exercise 2.1.5. Prove that C admits all colimits if and only if it admits coproducts and co-
equalizers. What kind of colimits do the following categories have (you do not have to justify
your answer):

(1) the category of finite sets,
(2) the category of sets,
(3) the category of finitely generated free abelian groups,
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(4) the category of abelian groups,
(5) the category of finite dimensional vector spaces,
(6) the category of all vector spaces,
(7) the category of finitely generated free modules over a commutative ring R,
(8) the category of finitely generated projective modules over a ring R,
(9) the category of all projective modules over a ring R.

Exercise 2.1.6. Give a very short proof (no more than one line) of the dual assertion: C

admits all limits if and only if it admits products and equalizers.

Exercise 2.1.7. Prove that the limit over the empty diagram gives terminal object, while the
colimit over the empty diagram gives the initial object.

Exercise 2.1.8. For any small category C, we can form the presheaf category

PSh(C) := Fun(Cop,Set).

Prove:

(1) If

F : I→ PSh(C) i 7→ Fi

is a functor and I is a small diagram, then for any c ∈ C the canonical map

(colim
I

Fi)(c)→ colim
I

(Fi(c))

is an isomorphism.
(2) Formulate and prove a similar statement for limits.
(3) Conclude that PSh(C) admits all limits and colimits.

Exercise 2.1.9. Prove the Yoneda lemma in the following form: the functor

y : C→ PSh(C) c 7→ y(c)(x) = Hom(x, c).

is fully faithful. Any functor in the image of y is called representable

Exercise 2.1.10. Prove that any functor F ∈ PSh(C) is a colimit of representable functors.
This entails constructing a natural transformation

colim y(c)→ F

where the domain is a colimit of a diagram of functors where each functor is representable, and
proving that this natural transformation is an isomorphism when evaluated at each object of C.

Exercise 2.1.11. We say that a category C is essentially small if it is equivalent to small
category. Let R be a commutative ring and consider CAlgR to be the category of commutative
R-algebras. We say that an R-algebra S is finite type if it admits an R-linear surjective ring
homomorphism

R[x1, · · ·xn]→ S.

Consider the full subcategory CAlgft
R ⊂ CAlgR of finite type R-algebras. Prove that:

(1) The collection of R-algebras of the form

{R[x1, · · · , xn]/I : I is an ideal}

forms a set (this is not meant to be hard and does not require knowledge of “set theory”).
(2) Prove that the category of finite type R-algebras are equivalent to the subcategory of R-

algebras of the form R[x1, · · · , xn]/I (this is not meant to be hard and does not require
knowledge of “set theory”).

(3) Conclude from this that CAlgft
R is an essentially small category.
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Exercise 2.1.12. We define the subcategory of left exact functors

PShlex(C) ⊂ PSh(C)

to be the subcategory of those functors which preserves finite limits. These are functors F such
that for any finite diagram1 α : I→ C, the canonical map

F(colim
I

α)→ lim
I

F(α)

is an isomorphism. Prove:

(1) a category C admits all finite limits if and only if it admits final objects and pullbacks;
(2) for a functor F to be left exact, it is necessary and sufficient that F preserves final

objects and pullbacks.
(3) Prove that the yoneda functor factors as y : C→ PShlex(C).
(4) If f : C→ D is a functor, we define

f∗ : PSh(D)→ PSh(C) f∗F = F ◦ f.
Prove that if f preserves finite colimits, then we have an induced functor

f∗ : PShlex(D)→ PShlex(C).

In the third problem set, we will use this to prove the adjoint functor theorem and construct the
sheafification functor.

Exercise 2.1.13. We say that C is locally presentable if there exists a subcategory i : Cc ⊂ C

(called the category of compact objects) which is essentially small and is closed under finite
colimits such that the functor

C→ PShlex(C)
i∗−→ PShlex(Cc)

is an equivalence of categories. Prove

(1) the category Sets is locally presentable with Setsc being the subcategory of finite sets,
(2) the category Vectk is locally presentable with Vectc being the subcategory of finite-

dimensional vector spaces.

3. Lecture 2: Prestacks

Throughout the course we will denote by CAlg the category of commutative rings.

Definition 3.0.1. A prestack is a functor

X : CAlg→ Set.

This means that to each commutative ring R, we assign the set X(R) and for each morphism
of commutative rings f : R→ S we have a morphism of sets

f∗ : X(R)→ X(S).

Furthermore, these satisfy the obvious compatibilities to be a functor.

Definition 3.0.2. A morphism of prestacks is a natural transformation g : X → Y of
functors. This means that for each morphism of commutative rings f : R → S we have a
commuting diagram

X(R) X(S)

Y(R) X(S).

f∗

gR gS

f∗

An R-point of a prestack is point x ∈ X(R); this is the same thing as a morphism of prestacks
Spec R→ X by the next

1This just means that I is a category with finitely many objects and finitely many morphisms.
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Lemma 3.0.3 (Yoneda). For all prestack X and all R ∈ CAlg, we have a canonical isomor-
phism

Hom(Spec R,X) ∼= X(R).

In particular we have that

Hom(Spec R,Spec S) ∼= Spec S(R) = Hom(S,R).

Note the reversal of directions.
We denote by PStk the category of prestacks. We already have a wealth of examples:

Definition 3.0.4. Let R be a commutative ring, We define

Spec R : CAlg→ Set S 7→ HomCAlg(R,S).

An affine scheme is a prestack of this form.

Remark 3.0.5. If a prestack is representable, then the ring representing it is unique up to
unique isomorphism. This is a consequence of the Yoneda lemma. In more detail, the Yoneda
functor takes the form

Spec : CAlgop → PStk = Fun(CAlg,Set).

This functor is fully faithful so we may (somewhat abusively) identify CAlgop with its image in
PStk. The category of affine schemes is then taken to be the opposite category of commutative
rings.

Example 3.0.6. Let n > 0. Then we define the prestack of affine space of dimension n as

An
Z : CAlg→ Set R 7→ R×n.

In the homeworks, you will be asked to prove that this prestack is an affine scheme, represented
by Z[x1, · · · , xn].

Example 3.0.7. Suppose that f(x) ∈ Z[x, y, z] is a polynomial in three variables; for a famous
example this could be f(x, y, z) = xn + yn − zn. For each ring A, we define

V(f)(R) := {(a, b, c) : f(a, b, c) = 0} ⊂ R×3.

Note that this indeed defines a prestack: given a morphism of rings ϕ : R → S, we have a
morphism of sets

V(f)(R)→ V(f)(S)

since f(ϕ(a), ϕ(b), ϕ(c)) = ϕ(f(a, b, c)) = ϕ(0) = 0. In fact, we have a morphism of prestacks
(in the sense of the next definition)

V(f)→ A×3
Z ,

where A×3
Z (R) = R×3.

3.1. Operation on prestacks I: fibered products. One of the key ideas behind algebraic
geometry is to restrict ourselves to objects which are defined by polynomial functions. More
abstractly we want to restrict ourselves to objects which arise from other objects in a con-
structive manner. This is both a blessing and a curse — on the one hand it makes objects
in algebraic geometry rather rigid but, on the other, it gives objects in algebraic geometry a
“tame” structure.

Example 3.1.1. As a warm-up, consider n-dimensional complex space Cn and suppose that
we have a polynomial function Cn → C. Then the zero set of f is defined via the pullback

Z(f) Cn

{0} C.

f



MATH 232: ALGEBRAIC GEOMETRY I 9

We want to say that Z(f) has the structure of a prestack or, later, a scheme. Of course the
above diagram presents Z(f) as a set but we can also take the pullback in, say, the category of
C-analytic spaces so that Z(f) inherits such a structure (if a pullback exists! and it does).

Example 3.1.2. Another important construction in algebraic geometry is the notion of the
graph. Suppose that f : X→ Y, then its graph is the set

Γf := {(x, y) : f(x) = y} ⊂ X×Y.

Suppose that X,Y have the structure of a scheme, or an C-analytic spaces or a manifold etc.,
then we want to say that Γf does inherit this structure. To do so we note that we can present
Γf in the following manner:

Γf Y

X×Y Y ×Y

∆

f×id

Definition 3.1.3. Suppose that X→ Y ← Z is a cospan of prestacks, then the fiber product
of X and Y over Z is defined as

(X×Y Z)(R) := X(R)×Y(R) Z(R).

It will be an exercise to verify the universal property of this construction.

Example 3.1.4. Suppose that we have a span of rings R← S→ T so that we have a cospan
of prestacks Spec R→ Spec S← Spec T. Then (exercise) we have a natural isomorphism

Spec R×Spec S Spec T ∼= Spec(R⊗S T).

Example 3.1.5. A regular function on a prestack is a morphism of prestacks X→ A1. If
X = Spec R, then this classifies a map of commutative rings Z[x] → R which is equivalent to
picking out a single element f ∈ R. The zero locus of f is the prestack

Z(f) := X×A1 {0}

where {0} → A1 is the map corresponding to Z[x]→ Z, x 7→ 0.

3.2. Closed immersions. A closed immersion is a special case of a subprestack

Definition 3.2.1. A subprestack of a prestack F is a prestack G equipped with a natural
transformation G→ F such that for any R ∈ CAlg, the map

G(R)→ F(R)

is an injection. We will often write F ⊂ G for subprestacks.

Remark 3.2.2. This is equivalent to saying that G → F is a monomorphism in the category
of prestacks.

The important thing about a subprestack is that for any morphism R→ R′, the requirement
that G→ F is a natural transformation enforces the commutativity of the following diagram

G(R) F(R)

G(R′) F(R′).

which should be read as: “the map G(R)→ F(R′) factors through the subset G(R′).”

Definition 3.2.3. A closed immersion of affine schemes is a morphism Spec R → Spec S
such that the induced map of rings S → R is surjective. In this case we say that Spec R is a
closed subscheme of Spec S.
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Let us try to understand what this means. the map ϕ : S → R, if surjective, is equivalent
to the data of an ideal I = ker(ϕ). As stated before, we should think of S as the ring of
functions on a “space” Spec S and so an ideal of S is a collection of functions which are closed
under the action of S. Now, the “space” Spec R should be thought of as the space on which
the functions that belong to I vanish. In other words a closed immersion is one of the form
Spec R→ Spec R/I.

Exercise 3.2.4. Suppose that f : An → A1 is regular function. Prove that the Z(f)→ An is
a closed immersion corresponding to a map of rings Z[x]→ Z[x]/(f).

Here is how one can globalize this definition:

Definition 3.2.5. A morphism of prestacks X → Y is a closed immersion or a closed
subprestack if for any morphism Spec R→ Y then:

(1) the prestack Spec R×Y X is representable and,
(2) the morphism

Spec R×Y X→ Spec R

is a closed immersion.

3.2.6. Problem Set 2.

Exercise 3.2.7. What does Spec(0) represent?

Exercise 3.2.8. Prove that the category of prestacks admit all limits and all colimits.

Exercise 3.2.9. Prove that the prestack An
Z is representable by Z[x1, · · · , xn].

Exercise 3.2.10. Consider the prestack

Gm : R 7→ R×.

Here R× is the multiplicative group of unit elements in R. Prove that Gm is representable.
What ring is it representable by?

Exercise 3.2.11. Suppose that f : An → A1 is regular function. Prove that the Z(f) → An

is a closed immersion corresponding to a map of rings Z[x]→ Z[x]/(f).

Exercise 3.2.12. Consider the prestack

GLn : R 7→ GLn(R).

Prove that it is representable. What ring is it representable by?

If R is a ring we write Rp to be the localization of R at p. We write mp to be the maximal
ideal of said local ring and write

κ(p) := Rp/mp.

Exercise 3.2.13. Let R ∈ CAlg and K a field. Prove that there is a natural bijection between

{Spec K→ Spec R}
with

{prime ideals p ⊂ R with an inclusion κ(p) ↪→ K}.

The Zariski tangent space of Spec R at a prime ideal p is the κ(p)-vector space given
by

Tp Spec R := (mp/m
2
p)∨.

Exercise 3.2.14. Let R ∈ CAlg and k a field and suppose that R is a k-algebra. Prove that
there is a bijection between

{k-morphisms of rings R→ κ[x]/(x2)}
with

{prime ideals p of R with residue field k and an element of the Zariski tangent space at p}.
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Exercise 3.2.15. Prove that the functor

Spec : CAlg→ PStk

(1) is fully faithful,
(2) preserves all colimits in the sense that if {Rα}α∈A is a diagram of commutative rings

then for all S ∈ CAlg, the canonical map

colim
α

(Spec Rα)(S)→ lim(Spec Rα)(S)

is an isomorphism. Deduce, in particular, that Spec converts tensor products of com-
mutative rings to pullback.

(3) Show, by example, that Spec does not preserve limits.

Exercise 3.2.16. Prove that a closed immersion is a subprestack.

For the next exercise, recall that if C is a category with products and X ∈ C, then the identity
morphism id : X→ X induces the diagonal map

∆ : X→ X×X.

Exercise 3.2.17. Let R ∈ CAlg and consider the multiplication map R⊗Z R→ R. Prove:

(1) the corresponding map Spec R→ Spec R× Spec R is given by the diagonal morphism,
(2) prove that ∆ is a closed immersion of prestacks.

Exercise 3.2.18. Let C be a category with all limits and suppose that we have a diagram

X

S T

Y

Prove that the diagram (be sure to write down carefully how the maps are induced!)

X×S Y X×T Y

S S×T S∆

is cartesian (hint: if you are unable to prove this result in full generality, feel free to assume
that C = PStk).

Exercise 3.2.19. A morphism of prestacks G → F is said to be representable if for any
Spec R→ F, the prestack G×F Spec R is representable. Prove that the following are equivalent:

(1) the diagonal ∆ : F→ F× F is representable;
(2) any map Spec S → F (in other words any map from an affine scheme to F) is repre-

sentable.

4. Lecture 3: Descent

We are about to define schemes. But first we define stacks2. In order to define the notion of
stacks, we need the notion of open immersions, which are complementary to closed immersions.

2This is where some heavy conflict with the literature will occur so be wary. In the literature, the notion of
stacks differs from this one in two, crucial ways. First the descent condition is asked with respect to something
called the étale topology (which we will cover later in class) and, secondly, the functor lies in the (2, 1)-category
of groupoids. Functors landing in said version of categories are not really functors in the sense we are used to
in class.
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Remark 4.0.1. Thinking about closed immersions of schemes is easier than thinking about
open immersions, at least to the instructor. Indeed, every closed immersion of Spec R corre-
sponds to the set of all ideals of R. We can think of a poset of ideals {I ⊂ J} which corresponds
to a poset of closed subschemes {Spec R/I→ Spec R/J}. Of course, we want to say that open
subschemes of Spec R should be those of the form

D(J) := Spec R r Spec R/J.

But now D(J) is in fact not representable — we will soon be able to prove this. In fact these
D(J)’s are the first examples of non-affine schemes. In particular D(J) is not the form Spec of
a ring. In order to fomulate descent in a more digestible manner, we will restrict ourselves to
open subschemes of Spec R which are actually affine.

Suppose that I is an ideal of a ring R, let us recall that the radical of I, denoted usually by√
I is defined as √

I = {x : xN ∈ I for some N� 0}.

Example 4.0.2. Let I = (0) be the zero ideal. Then the nilradical is
√

(0) = {f : fN =

0 for some N� 0}. We say that a ring is reduced if
√

(0) = 0.

Definition 4.0.3. Let R be a ring and f ∈ R. A basic Zariski cover of the ring Rf consists
of a set I and a collection U := {fi : fi ∈ R}i∈I such that

f ∈
√

Σ(fi).

In particular, a basic Zariski cover of a ring R consists of a set I and a collection U := {fi :
fi ∈ R}i∈I subject to the following condition:

1 ∈
√

Σ(fi).

We write

{Spec Afi → Spec Af}i∈I

to denote an arbitrary basic Zariski cover.

Remark 4.0.4. If f is a unit so that Rf = R, this is a very redundant definition. Indeed, any

element x ∈
√

Σ(fi) means that

xN ∈ Σ(fi)

But the sum of ideals means we have a sum of elements in each ideal where all except finitely
many elements are zero so:

xN = a1f1 + · · ·+ anfn,

up to rearrangements. But now

1 = 1N = a1f1 + · · ·+ anfn.

Therefore we can find a subcover of U such that

1 ∈ Σ(fi).

Of course this argument also does show that a basic Zariski cover of Rf can be refined by a
finite subcover.

Example 4.0.5. Let p, q be distinct primes in Z. This means, by Bézout’s identity, we can
write

1 = kp+ rq,

for some k, r ∈ Z. In the language above we find that

{Spec Z[ 1
p ],Spec Z[ 1

q ] ↪→ Spec Z}

defines a basic Zariski cover of Spec Z.
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Example 4.0.6. Let k be a field and consider k[x]. Suppose that p(x), q(x) are polynomials
which are irreducible and are coprime. Then Bézout’s identity again works in this situation:

1 = k(x)p(x) + r(x)q(x).

In this language we find that

{Spec k[x]p(x),Spec k[x]q(x) ↪→ Spec k[x]}

defines a basic Zariski cover of Spec k[x].

Definition 4.0.7. A prestack F : CAlg → Set is a (Zariski) stack if for any A ∈ CAlg and
any basic Zariski cover {Spec Afi → Spec A}i∈I the diagram

F(A)→ F(
∏
i

Afi)⇒ F(
∏
i0,i1

Afi0
⊗A Afi1

)

is an equalizer diagram where the maps are induced by∏
Afi →

∏
i0,i1

Afi0
⊗A Afi1

(gi) 7→ (gi0 |Afi0 ·fi1 ).

and ∏
Afi →

∏
i0,i1

Afi0
⊗A Afi1

(gi) 7→ (gi1 |Afi0 ·fi1 ).

4.1. Unpacking the descent condition and Serre’s lemma. Let us note a couple of easy
properties about localizations

Lemma 4.1.1. Let f1, f2 ∈ R then

(Rf1)f2
∼= Rf1·f2

∼= Rf1 ⊗R Rf2 .

This will be homework. For the rest of this section, we will seek be taking a map f : R→ A
and then postcomposing then along some localization of A, say A′; for this it is convenient to
use the notation

f |A′
and think about “restriction.”

Let us fix a ring R and suppose that A is a “test-ring” and we are interested in the set

Hom(Spec A,Spec R),

and we would like to recover this set in terms of a given basic Zariski cover of A. As we had
discussed, this latter object is given by the data of elements g1, · · · gn ∈ A such that 1 =

∑n
i=1 gi.

Let us consider the following set

Glue(R,A, {gi}) ⊂
n∏
i=1

Hom(Spec Agi ,Spec R),

consisting of the n-tuples {fi : R→ Agi} subject to the following condition

(cocycle) fi|Agi·gj = fj |Agj ·gi ,
called the cocycle condition.

Lemma 4.1.2. As above we have an isomorphism

Glue(R,A, {gi}) ∼= Eq(
∏
i

Hom(R,Agi)⇒
∏
i0,i1

Hom(R,Agi0 ·gi1 ))

This is an exercise in unpacking definitions. Even though Glue is more explicit, in order
to prove actual results, we will work with the equalizer formulation. Our main theorem is as
follows:
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Theorem 4.1.3. The map

Hom(Spec A,Spec R)→
n∏
i=1

Hom(Spec Agi ,Spec R) f : R→ A 7→ (f |Agi )i∈I

factors as
Hom(Spec A,Spec R)→ Glue(R,A, {gi})

and induces an isomorphism. Equivalently, Spec R is a Zariski stack.

We will prove Theorem 4.1.3 in the right level of generality. The next lemma is called “Serre’s
lemma for modules.”

Lemma 4.1.4. Let A be a ring and f1, · · · , fn elements such that
∑n
i=1 fi = 1. Then

M→
∏

Mfi ⇒
∏

Mfi·fj

is an equalizer diagram.

Proof. We first assume

(1) there exists an element fi, say f1, which is invertible. So that M ∼= Mf1 .

Then we prove the result: indeed, denote the equalizer by Eq. Indeed, the map M →
∏

Mfi

factors through the equalizer since this is just the map

m 7→ (m|Afi ),
and the cocycle condition is satisfied. On the other hand, If {mi} ∈ Eq ⊂

∏
Mfi , then since

m1 ∈ M (under the assumed isomorphism), we get that the map is surjective.
To prove injectivity: if m1 = 0, then we claim that mi = 0 for all i > 0 if (mi) is in the

equalizer. But now, we note that, by the equalizer condition, we get that for i > 0

Mfi → Mfi·f1

is an isomorphism and the image of mi under this isomorphism must be the image of m1 under
the map Mf1 → Mfi·f1 because of the equalizer condition. Therefore mi must be zero.

Now, to prove the desired claim: take kernels and cokernels:

0→ K→ M→ Eq→ C→ 0

The claim is that K,C = 0. They are 0 after inverting each fi by the previous claim. The proof
the finishes by the next claim.

�

Lemma 4.1.5. Let A be a ring and f1, · · · , fn elements such that
∑n
i=1 fi = 1. Suppose that

Mfi = 0 for all i = 1, · · · , n. Then M = 0.

Proof. The condition means we can find an N such that fN
i m = 0. But then there is an even

larger M:

m = 1M ·m = (
∑

fi)
M ·m = 0.

�

Corollary 4.1.6. Let A be a ring and f1, · · · , fn elements such that
∑n
i=1 fi = 1. Then

A→
∏

Afi ⇒
∏

Afi·fj

is an equalizer diagram of rings. In other words, we have proved that A1 is a Zariski stack.

Proof. This follows from what we have proved. The “in other words” part follows from the fact
that

A1(A) = A.

�

Now let us prove
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Proof of Theorem 4.1.3. We have proved that A1 is a Zariski stack. Any affine scheme can be
written as a pullback

Spec R AI

Spec Z AJ,0

where I, J are sets. The result then follows from the next lemmas (one of which is homework):
�

Lemma 4.1.7. Zariski stacks are preserved under limits.

Lemma 4.1.8. Spec Z is a Zariski stack.

Proof. For any ring R, Spec Z(R) = ∗. The claim then follows from the observation that the
diagram

∗ → ∗⇒ ∗
is an equalizer. �

4.1.9. Problem set 3.

Lemma 4.1.10. Let R be a ring and consider the functor from R-algebras to R-modules

U : CAlgR → ModR.

Prove:

(1) this functor preserves final objects,
(2) this functor creates pullbacks: a diagram of rings

A B

C D,

is a pullback diagram if and only if the corresponding diagram of modules is,
(3) if you are feeling up to it: prove that in fact U creates all limits.

Exercise 4.1.11. Here is a formula for Rf . We will work in the generality of the category
ModR.

(1) Let f ∈ R and consider the following N-indexed diagram in the category of R-modules

M
f ·−→ M

f ·−→ M
f ·−→ · · · .

Define the colimit to be the R-module Mf . Prove that we have a natural isomorphism:
for any N ∈ ModR such that the map

f · : N→ N,

is an isomorphism then:

HomModR(Mf ,N) ∼= HomModR(M,N).

(2) Construct explicitly a multiplication on Rf and a compatible ring homomorphism R→
Rf .

(3) Consider the functor

j∗ : ModRf → ModR

given by restriction of scalars. Prove that this functor admits a left adjoint given by
j∗ : M 7→ Mf ; part of the task is to explain why Mf is naturally an Rf -module.

(4) Use the formula from 1 to prove that j∗ is fully faithful and show that the essential
image identifies with the subcategory of R-modules where f · acts by an isomorphism.



16 E. ELMANTO

Lemma 4.1.12. Let f1, f2 ∈ R then

(Rf1)f2
∼= Rf1·f2

∼= Rf1 ⊗R Rf2 .

Exercise 4.1.13. In this exercise, we will give a proof of a basic, but very clear formulation
of descent. Let A be a ring and suppose that f, g ∈ A are elements

(1) Consider the square

A Af

Ag Afg.

Prove that it the top and bottom arrows are isomorphisms after inverting f ; conclude
that the resulting square is cartesian.

(2) Prove that the left vertical and the right vertical arrows are isomorphisms after inverting
g; conclude that the resulting square is cartesian.

(3) Now assume:

1 ∈ (f) + (g).

Conclude that the square is cartesian.

Exercise 4.1.14. Prove that Zariski stacks are preserved under limits: suppose that we have
a diagram I→ PStk, then the functor

R 7→ lim
I

Fi(R),

defines a Zariski stack.

Exercise 4.1.15. Prove that any affine scheme Spec R can be written as a pullback

Spec R AI

Spec Z AJ.0

5. Lecture 4: Schemes Part 1

We have done a bunch of abstract stuff. I would like to tell you how to say something
concrete using abstract stuff.

5.1. Diversion: multiplicative groups and graded rings. Let us, for this section, consider
what structure what one can endow on Gm = Spec Z[t, t−1]. One suggestive way to think about
Z[t, t−1] is as

Z[t, t−1] ∼= Z[Z] ∼=
⊕
j∈Z

Z(j).

This is also called the group algebra on the (commutative) group Z; we will say why this is a
interesting at all later on. We want to say that Gm is a group object in the category of affine
schemes. Unwinding definitions, we need to provide three pieces of data

(Mult.) The multiplication:

µ : Z[t, t−1]→ Z[t, t−1]⊗Z Z[t, t−1] t 7→ t⊗ t,
(Id.) The identity

ε : Z[t, t−1]→ Z t 7→ 1

(Inv.) The inverse

ι : Z[t, t−1]→ Z[t, t−1] t 7→ t−1.

These data (or, more precisely, the opposites thereof) are subject to the compatibilities that
prescribe Gm as a group object in PStk.
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Definition 5.1.1. An affine group scheme is an affine scheme G = Spec R with maps
µ : G×G→ G, ε : Spec Z→ G, ι : G→ G which endows it with the structure of a group object
in prestacks.

When we speak of groups, we always want to speak about group actions. If G is an affine
group scheme and F is a prestack then a (left) action is given by a morphism of prestacks

a : G× F → F,

satisfying the obvious compatibilities:

G×G× F G× F

G× F F.

µ×id

id×a a

a

F G× F

F.

ε

id
a

If we restrict ourselves to Gm acting on affine schemes, we actually obtain the next result
whose standard reference is [DG70, Exposé 1, 4.7.3]. Let us denote by AffBGm the category
of affine schemes equipped with a Gm-action and Gm-equivariant morphisms. This is not a
subcategory of prestacks, but admits a forgetful functor

AffBGm → PStk.

On the other hand a Z-graded ring is a ring R equipped with a decomposition:

R =
⊕
i∈Z

Ri

such that:

(1) each Rj is an additive subgroup of R (in other words, the direct sum above is taken in
the category of abelian groups) and,

(2) the multiplication induces RiRj ⊂ Ri+j .

We say that an element f ∈ R is a homogeneous element of degree n if f ∈ Rn. A graded
morphism of graded rings is just a ring homomorphism ϕ : R→ S such that ϕ(Rj) ⊂ Sj . We
denote by grCAlg the category of Z-graded rings.

Theorem 5.1.2. There is an equivalence of categories

AffBGm ' (grCAlg)op.

Remark 5.1.3. One of the main points of Theorem 5.1.2 is that it is interesting to read from
left to right and right to left. One the one hand one can use the geometric language of groups
acting on a scheme/variety to encode a combinatorial/algebraic structure. On the other hand,
it gives a purely combinatorial/algebraic description of a geometric idea.

Proof. First we construct a functor:

AffBGm → (grCAlg)op.

Recall that the tensor product of rings is computed as the tensor product of underlying modules.
Therefore we can write isomorphisms of Z-modules:

R⊗Z Z[t, t−1] ∼= R⊗Z Z[Z] ∼=
⊕
j∈Z

R(j).

Hence a Gm-action on Spec R is the same data as giving a map

ϕ : R→
⊕
j∈Z

R(j) f 7→ (ϕj(f) ∈ R(j)),

satisfying certain compatibilities. We note that the direct sum indicates that the components
of (ϕj(f)) is finitely supported.
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Using the identity axiom we see that the composite

R→
⊕
j∈Z

R(j)
t 7→1−−−→ R

must be the identity. Therefore, in coordinates, we get that for any f ∈ R, we get that

f =
∑
j∈Z

ϕj(f),

so that any f can be uniquely written as a finite sum of the ϕj(f)’s. To conclude that this
defines a grading on R we need to prove that each ϕj is an idempotent. If this was proved, then
the grading would be such that f ∈ R is of homogeneous degree j whenever ϕ(f) = ftj .

However, this is the case by associativity of the action:

R
⊕

j∈Z R(j)

⊕
j∈Z R(j)

⊕
j∈Z

⊕
k∈Z R(jk).

ϕ

ϕ ϕ

µ

Therefore we conclude that R splits, as a Z-module (aka abelian group) as R ∼=
⊕

j ϕjR(:= Rj)
and one can check that this defines a graded ring structure on R where the compatibility of
multiplication originates from the fact that ϕ is a ring map.

On the other hand, given a ring R equipped with the structure of a graded ring R =
⊕

Rj

we define a map

ϕ : R→
⊕
j∈Z

R(j),

on the level of abelian groups as

R→ πjR ⊂ R(j) ∼= R,

where πj is the projection map. This is checked easily to define a Gm-action and the functors
are mutually equivalent.

�

Example 5.1.4. There is an action of Gm on A1 that “absorbs everything to the origin”; in
coordinates this is written as t · x = tx. An exercise in this week’s homework will require you
to translate this to a grading.

Example 5.1.5. The best way to define new graded rings is to mod out by homogenenous
polynomial equations. Recall that a polynomial f(x1, · · · , xn) ∈ R[x1, · · · , xn] (over any ring
R) is said to be homogeneous of degree d if for any r ∈ R rdf(x1, · · · , xn) = f(rx1, · · · , rxn).
The instructor never found this a useful definition; we can equivalently define this to be a linear
combination of monomials of degree d, i.e.,

axr11 · · ·x
rk
k

k∑
j=1

rj = d.

Here is a nice visual example: consider the quadric cone:

Spec Z[x, y, z]/(x2 + y2 − z2).

Since Z[x, y, z]/(x2 + y2 − z2) is the quotient of a graded ring by a homogeneous equation, it
inherits a natural grading. This defines a Gm-action. If we replace Z by a field, convince
yourself that this is pictorially the “absorbing” action of the cone onto its cone point.
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5.2. Complementation and open subfunctors. In the last class we defined the descent
condition and also proved that Spec R satisfies this condition. This is like choosing a basis in
a vector space — we could have two covers which are specified by {fi} or {gj} and we have to
say something in order to prove that descend with respect to one cover implies descent for the
other.

Let us try to characterize open immersions of affine schemes in terms of its functor of points.
We know that open subschemes of Spec A should be one which is the complement of a closed
subscheme where the latter is of the form Spec A/I. Furthermore we know the following example:

Remark 5.2.1. If I = (f), then Spec A/f ↪→ Spec A has a complement which is actually an
affine scheme given by Spec Af . Indeed, let us attempt to unpack this: suppose that Spec R→
Spec A is a morphism of affine schemes corresponding to a map of rings A → R. We want to
say that Spec R lands in the open complement of Spec A/f which translate algebraically to the
following cartesian diagram

A R

A/f 0.

This means that the map ϕ : A → R must satisfy: R/fR = 0 and so fR = R which exactly
means that f acts invertibly on R and hence (by homework) defines uniquely a ring map

Af → R.

To summarize our discussion:

(1) intuitively (and actually!) the closed subscheme Spec A/f is one which is cut out by
f or, in other words, the locus where f vanishes. Its complement, which is an open
subscheme (if you believe in topological spaces) is the locus where f is invertible so we
should take something like Spec Af .

(2) we need a new definition to make sense of complementation of prestacks.

Let us also note the following:

Lemma 5.2.2. For any ring f , the following diagram is cartesian

Spec Rf Spec R

Spec Z[t, t−1] A1 = Spec Z.

f

Let us recall that a morphism of prestacks X→ Y is a closed immersion if for any morphism
Spec R→ Y then:

(1) the prestack Spec R×Y X is representable and,
(2) the morphism

Spec R×Y X→ Spec R

is a closed immersion.

Definition 5.2.3. Let G ⊂ F be a closed immersion of prestacks. The complement of G,
defined by F r G is the prestack given in the following manner: a morphism x : Spec R→ F is
in F r G if and only if the following diagram is cartesian

∅ G

Spec R F
x

We note that F r G is indeed a prestack because the empty scheme pullsback

Lemma 5.2.4. Let R ∈ CAlg and I ⊂ R an ideal. Then there is a natural bijection between
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(1) maps R→ A such IA = A and,
(2) morphisms Spec A→ Spec R such that

∅ Spec R/I

Spec A Spec R.x

Proof. The condition of the second item says that the following diagram is cocartesian:

R A

R/I 0.

which means that A⊗R R/I = A/IA = 0 which exactly means that A = IA.
�

Definition 5.2.5. A subfunctor F → Spec R of the form in Lemma 5.2.4 is called an open
subscheme, while F is called a quasi-affine prestack. In this case we write

F = D(I).

If F = Spec Rf , we write D(f).

We will soon learn how to prove that not all quasi-affine prestacks are affine.

5.3. Exercises.

Exercise 5.3.1. Consider the action of Gm on An given by

Z[x1, · · · , xn]→ Z[t, t−1, x1, · · · , xn] xj 7→ t−kjxj .

Calculate the induced grading on Z[x1, · · · , xn].

Exercise 5.3.2. Let R• be a graded ring which is concentrated in Z>0, i.e., R<0 = 0. Note
that:

(1) each Rj is then canonically an R0-module and, in fact, R• is an R0-algebra;
(2) the subset R+ :=

⊕
i>1 Ri ⊂ R• is an ideal

Prove that the following are equivalent:

(1) the ideal R+ is finitely generated as an R•-ideal;
(2) R• is generated as an R0-algebra by finitely many homogeneous elements of positive

degree.

In the above situation we say that R• is a finitely generated graded ring.

Exercise 5.3.3. Let A be a ring which can be written as A ∼= B×C. Prove that the projection
map A→ B is both an open and a closed immersion.

Exercise 5.3.4. Here we introduce another perspective on descent. Fix a prestack

F : CAlg→ Set.

We say that a morphism of affine schemes Spec S→ Spec R is of F-descent if

F(R)→ F(S)⇒ F(S⊗R S).

is an equalizer diagram. It is of universal F-descent if for any map Spec T→ Spec R,

F(T)→ F(T⊗R S)⇒ F(S⊗R T⊗R S ∼= (S⊗R T)⊗T (T⊗R S)).

is an equalizer diagram.
Prove:

(1) any morphism Spec S→ Spec R with a section is of universal F-descent,
(2) if f, g are of universal F-descent then so is their composite,



MATH 232: ALGEBRAIC GEOMETRY I 21

(3) if f ◦ g is universal F-descent, and f is too, then g is of universal F-descent.
(4) the collection of maps of universal F-descent is closed under base change: if Spec S →

Spec R is of universal F-descent, then for any Spec T→ Spec R, the map Spec T⊗RS→
Spec T is.

Now, assume that F is a Zariski stack for any basic Zariski cover and further suppose that
F converts finite coproduts of affine schemes to finite products. Let us prove that F is a Zariski
stack in the following way:

(1) fix once and for all Spec R = X and consider a Zariski cover U = {Ui ↪→ X} which we
may already assume to be finite. We want to prove that

tiUi → X,

6. Lecture 5: Schemes, finally

6.1. Quasi-affine prestacks are Zariski stacks.

Proposition 6.1.1. Any quasi-affine scheme is a prestack.

Proof. Suppose that U = D(I) ⊂ Spec A is quasi-affine. We claim that it is a Zariski stack.
Let R be a test ring and let {fi ∈ R} determine a basic Zariski open cover. We first prove the
following claim:

• a morphism ϕ : A→ R satisfies I · R = R if and only if I · Rfi = Rfi .

Indeed, we have a short exact sequence of modules:

0→ I→ A→ A/I→ 0.

Applying R⊗A −, we get:

Tor1(R,A/I)→ I⊗A R→ R→ R⊗A A/I,

so we need only prove that R⊗A A/I,Tor1(R,A/I) are zero as R-modules.
By Lemma 4.1.5, we need only check that for all fi, tensoring the above further with ⊗RRfi

is zero, But the map R→ Rfi is flat. Therefore the claim follows from:

Rfi ⊗R R⊗A A/I = Rfi ⊗A A/I = 0 Rfi ⊗R Tor1(R,A/I) = Tor1(Rfi ,A/I) = 0.

I claim that we are now done. Indeed, shorthanding the relevant equalizers as Eq(F)(R) we
get a diagram:

D(I)(R) Eq(D(I)(R))

Spec A(R) Eq(Spec A)(R).

Since the left vertical map is injective and the bottom horizontal map is an isomorphism, the
top vertical map is injective. Now, the top vertical map is also surjective by what we have
proved. �

6.2. General open covers. We formulated a coordinate-dependent way of phrasing descent
because we have used the notion of a basic Zariski cover. We will get rid of these choices now.

Definition 6.2.1. Let F be a prestack. Then an open subprestack of F or an open immer-
sion of prestacks is a morphism G→ F such that for any morphism Spec R→ F,

(1) the prestack Spec R×Y X is representable and
(2) the morphism Spec R×Y X→ Spec R is an open subscheme.

Lemma 6.2.2. Let Z ↪→ F be an closed immersion, then the complement Fr Z is canonically
an open immersion.
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Definition 6.2.3. A Zariski cover of an affine scheme X = Spec A is a collection of open
embeddings of prestacks

U = {U ↪→ X},
such that for any nonzero ring R, S = Spec R with a map S→ X there exists a U ↪→ Spec A ∈ U

such that

U×X S 6= ∅.

Definition 6.2.4. A prestack F : CAlg → Set is a (Zariski) stack (resp. (Zariski) stack
for the Zariski cover U) if for any A ∈ CAlg and any (resp. the) Zariski cover U := {Ui →
Spec A}i∈I the diagram

F(Spec A)→
∏

Hom(Ui,F)⇒
∏
i0,i1

Hom(Ui0 ×Spec A Ui1 ,F)

is an equalizer diagram where the maps are induced are the obvious ones.

Another exercise in unpacking definitions:

Lemma 6.2.5. A basic Zariski cover is a Zariski cover. In particular if F is a Zariski stack,
then it is a Zariski stack with respect to basic open covers.

This tells us that Definition 6.3.2 is stronger than Definition 4.0.7. In some sense Defini-
tion 6.3.2 is preferable — it affords the flexibility of working with covers where the opens are
not necessarily affine. We will work towards proving the equivalence of these two definitions
shortly. First let us consider the different ways we can think about Zariski covers:

Lemma 6.2.6. Let X = Spec A, and U = {U ↪→ Spec A} is a collection of open immersions.
then the following are equivalent:

(1) U is a Zariski cover.
(2) U has a finite subset V which is also an open cover.
(3) for any field k and any map x : Spec k → X there exists an U ∈ U such that x factors

through U.

Proof. The implication (1) ⇒ (2) comes under the term “affine schemes are quasicompact”
which is one way in which open subsets look very different in algebraic geometry than what you
have experienced before. To prove this, we note that giving a Zariski open cover of an affine
scheme is to give a collection of ideals {Ij} such that

1 ∈
√∑

Ij .

But this means, from the definition of sums of ideals, there exists a finite subcollection i0, · · · , ik
such that

1 ∈
√ ∑

06s6k

Iis .

This in turn means that we can refine the above open cover by

{D(Iis)→ Spec A}06s6k.

Let us prove (2)⇒ (3). Given a morphism into a field ϕ : A→ k, we want to find U ↪→ X ∈ V

such that x factors through U. Suppose that there is none, then ϕ(ΣIj) = 0, which means that
ϕ(1) = 0 but this is not possible.

Let us prove (3) ⇒ (1). Suppose that R is a nonzero ring with a map Spec R → Spec A so
that we have a morphism ϕ : A → R. Since R is nonzero, it has a maximal ideal m so that
R/m = κ a field. By hypothesis, there exists a U ∈ U such that U×X Specκ is nonempty, but
this also means that U×X Spec R is nonempty. �

This provides the first mechanism by which a scheme can be non-affine.
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Lemma 6.2.7. Let (Ai)i∈N be a collection of nonzero rings and consider a countable product∐
N Spec Ai. This prestack (which in fact a Zariski stack) is not an affine scheme.

Proof. We first note that tSpec Ai = colimn→∞ tni=1 Spec Ai. Now, since finite limits, in
particular, equalizers commutes with N-indexed colimits, we conclude that tSpec Ai is a stack.
However we claim that it is not an affine scheme. Suppose that tSpec Ai was representable by
a ring B so that for any ring R, we have a functorial isomorphisms∐

Hom(Ai,R) ∼= (
∐
N

Spec Ai)(R) ∼= Hom(B,R).

Now, consider the collection of maps {Spec Ai → Spec B}. I claim that this is an open cover.

(1) first we prove that Spec Ai → Spec B is an open immersion. Indeed, for each Aj , under
the map

Hom(Aj ,Aj)
ιj−→

∐
Hom(Ai,Aj) ∼= Hom(B,Aj)

the identity on the left hand side gets mapped to ϕj : B → Aj . Take the ideal in B
generated by ker(ϕj)j 6=i, determining a closed subset of Spec B. We can check that the
complement is exactly Spec Ai, therefore it is open in Spec B.

(2) Next, we use criterion 3 of Lemma 6.2.6: given a map Spec k → Spec B, we get an
element in a component of Hom(Ai, k) so that, in particular, this collection is a cover.

But, there is no refinement of this subcover. �

6.3. Universality of descent. We would like to prove the following result:

Theorem 6.3.1. Suppose that F : CAlg→ Set is a functor. Then the following are equivalent:

(1) F is a Zariski stack in the sense of Definition 6.3.2.
(2) F is a Zariski stack in the sense of Definition 4.0.7.

To do so, we define Zariski open covers of prestacks:

Definition 6.3.2. A Zariski cover of an prestack F is a collection of open embeddings of
prestacks

U = {U ↪→ F},
such that for any nonzero ring R, S = Spec R with a map S → F there exists a U ↪→ F ∈ U

such that
U×F S 6= ∅.

Lemma 6.3.3. Let A be a ring and I and ideal of A. Suppose that {A→ Afi} is a basic Zariski
cover of A. Then {Spec Afi → D(I) : fi ∈ I r 0} is a Zariski open cover of the quasi-affine
scheme D(I).

Proof. First, we may assume that none of the fi’s are nilpotent: if there was a nilpotent element
then Spec Afi = Spec 0 = ∅ and this makes no contribution to the Zariski cover.

Now it suffices to prove that for a morphism Spec B → D(I) where B is nonzero, then
Spec B×D(I) Spec Afi 6= 0 whenever fi ∈ Ir 0. This classifies a morphism ϕ : A→ B such that
IB = B. It thus suffices to prove that:

Afi ⊗
ϕ
A B 6= 0.

If this was zero then 1 = 0. But 1 = 1
fi
⊗ϕ(fi) and being zero means that there exist an N such

that fN
i ( 1

fi
⊗ ϕ(fi)) = 0. Since fi was not nilpotent this means that fN

i ϕ(fi) = ϕ(fi)
N = 0 so

that fi is nilpotent in B. But this cannot be since B = IB was assumed.
�

Lemma 6.3.4. Any open cover U of an affine scheme Spec A admits a refinement by basic
Zariski covers. More precisely: given U a Zariski open cover of Spec A, there exists a basic
Zariski open cover V := {A→ Afi} with the property that for each U ∈ U, the set

VU := {Spec Afi ∈ V : Spec Afi ↪→ U}
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is a Zariski open cover of U.

Proof. By Lemma 5.2.4, U = {D(Iα)}α. By the proof of Lemma 6.2.6 we have that

A =
√∑

Iα.

From this, extract the set
{f : ∃α, f ∈ Iα r 0}

Then {Spec Af} is the desired refinement after Lemma 6.3.3. �

Here’s an addendum to a previous definition. Let us first expand our minds and define QAff
to be the full subcategory of PStk spanned by affine schemes and quasi-affine schemes. The
objects of this category are prestacks of the form D(I) for some ideal I ⊂ A is a ring A.

Definition 6.3.5. A Zariski cover of an quasi-affine scheme is a collection of open embeddings
of prestacks

U = {U ↪→ D(I)},
such that for any nonzero ring R, Spec R with a map Spec R→ D(I) there exists a U ↪→ D(I) ∈ U

such that
U×X S 6= ∅.

Definition 6.3.6. A prestack F : QAffop → Set is a (Zariski) stack (resp. (Zariski) stack
for the Zariski cover U) if for any U ∈ QAff and any (resp. the) Zariski cover U := {Ui →
D(I)}i∈I the diagram

F(D(I)))→
∏

Hom(Ui,F)⇒
∏
i0,i1

Hom(Ui0 ×Spec A Ui1 ,F)

is an equalizer diagram where the maps are induced are the obvious ones.

Theorem 6.3.7. Suppose that F : QAffop → Set is a prestack. The following are equivalent:

(1) F is a Zariski stack.
(2) F is a Zariski stack for basic open covers of affine schemes.

6.4. Refining covers. We want to relate the notion of a Zariski stack defined in this class
with the last. To do so, we need the language of refining covers.

Definition 6.4.1. Suppose that we have two families of morphism with fixed targets

U = {Uα ↪→ F}α∈A,V = {Vβ ↪→ G}β∈B.

Then a morphism of families with fixed targets, written as

U→ V,

is the data of (1) a morphism F → G, (2) a map t : A → B and (3) a map Uα → Vt(α) such
that the diagram

Uα Vt(α)

F G

commutes. We say that a morphism of families with fixed targets is a refinement if F = G.
For a morphism of families with fixed targets U→ V, we write for each Vβ ∈ V:

UVβ := {Uα : Uα → Vβ}.

Definition 6.4.2. Let F be a prestack and V an open covering of F. We say that a refinement

U→ V

is a refinement of covers if (1) U is also a Zariski cover, and (2) for each Vβ ∈ V, the family
UVβ := {Uα : Uα → Vβ} is a Zariski cover.
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This is left to the reader.

Lemma 6.4.3. Suppose that prestack F is a prestack and V is a Zariski cover. Suppose that
we have a refinement of covers U→ V, F such that

(1) F is a Zariski stack for U and,
(2) for any UVβ , F is a Zariski stack for UVβ as well.

Then F is a Zariski stack for V.

Proposition 6.4.4. Let F be a prestack. Then the following are equivalent:

(1) F is a Zariski stack,
(2) F is a Zariski stack for all basic Zariski covers of affine schemes.

6.5. The definition of schemes.

Definition 6.5.1. A Zariski cover of a prestack is a collection of open embeddings of prestacks

U = {U ↪→ F},
such that for any nonzero ring R, Spec R with a map Spec R → Spec A there exists a U ↪→
Spec A ∈ U such that

U×X S 6= ∅.

Definition 6.5.2. A scheme is a Zariski stack X with an open cover U → X such that each
U ∈ U is an affine scheme.

Proposition 6.5.3. Any affine scheme is a scheme.

One of the most powerful aspects of algebraic geometry is the fact that we can work relative
to a base scheme. Let us illustrate how this works with some examples.

(1) consider the map

C→ C z = a+ ib 7→ z = a− ib.
This is is a Z-linear map. However, it is not a C-linear map:

(x+ iy)ib = (x+ iy)(−ib) = −xib+ yb,

but
(x+ iy)(ib) = (xib− yb) = −xib− yb.

7. Lecture 6: Relative algebraic geometry

8. Lecture 7: Quasicoherent sheaves
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