
MOTIVIC COLIMITS AND EXTENDED POWERS

TOM BACHMANN, ELDEN ELMANTO, AND JEREMIAH HELLER

Abstract. We define a notion of colimit for diagrams in a motivic category indexed by a presheaf of
spaces (e.g. an étale classifying space), and we study basic properties of this construction. As a case

study, we construct the motivic analogs of the classical extended and generalized powers, which refine

the categorical versions of these constructions as special cases. We also offer more computationally
tractable models of these constructions using equivariant motivic homotopy theory. This is the first in

a series of papers on power operations in motivic stable homotopy theory.
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1. Introduction

1.1. Overview. This is the first in a series of papers which introduce and study power operations in the
context of motivic stable homotopy theory. In this paper, we introduce a new construction which puts
the theory on solid footing: motivic colimits. We demonstrate how this theory works by constructing
a motivic version of extended and generalized powers. This construction can be seen as generalizing
certain ideas on motivic Thom spectra by the first author and Hoyois [BH20, §16], or as a motivic analog
of equivariant colimits in the sense of Shah [Sha18]. It can also be interpreted as an instance of Lurie’s
extensive theory of relative colimits [Lur17b, §4.3.1].

To describe this construction, let us fix a base scheme S. We will work with the category SmS of
smooth S-schemes, which serve as the building blocks for motivic homotopy theory over S. Roughly
speaking the formalism of motivic colimits takes as input a motivic diagram, which is a morphism of
presheaves of ∞-categories on smooth S-schemes

f : X → SH(−),

where X is a presheaf of ∞-groupoids. The output, the motivic colimit of f , is a motivic spectrum over
the base scheme

colim
X

f ∈ SH(S).

We give a flavor of the theory via some examples.

Example 1.1. Suppose that X is a smooth S-scheme with structure map pX : X → S. Via the Yoneda
embedding, we can regard X as a discrete presheaf on SmS which we denote by hX . A motivic spectrum
E ∈ SH(X) is classified by a morphism E : hX → SH(−), which is an example of a motivic diagram as
above. The motivic colimit is then given by

colim
hX

E ' pX]E.

Here pX] is the left adjoint to p∗X : SH(S) → SH(X). In particular, if hX → SH classifies the relative
sphere spectrum 1X ∈ SH(X) then the motivic colimit is the suspension spectrum Σ∞+ X ∈ SH(S). For
another example, if X = SqS (so that p is the fold map), then E ∈ SH(S

∐
S) ' SH(S)×SH(S) really

corresponds to two spectra E1, E2 ∈ SH(S), and colimhX E = E1 q E2 recovers an ordinary colimit.

Example 1.2. Let K be the presheaf of spaces sending X to the algebraic K-theory space K(X). As in
[BH20, §16.2], we have a canonical morphism of presheaves

J : K → SH(−) ξ 7→ Sξ.

Here Sξ is the Thom spectrum of the virtual vector bundle ξ. In particular if ξ was the class of an actual
vector bundle E , then

Sξ ' Σ∞
E
E \ 0

.

This morphism was christened the motivic J-homomorphism in [BH20]. Out of this we can extract two
motivic colimits determining familiar objects:

(1) precomposing with the inclusion of the rank zero part of K-theory e : K◦ → K, we get a motivic
diagram

J ◦ e : K◦ → SH(−),

whose motivic colimit gives us Voevodsky’s algebraic cobordism spectrum [BH20, Theorem 16.13]

MGLS ∈ SH(S).

(2) Simply taking the motivic colimit of the J gives us the periodized version of algebraic cobordism
[BH20, Remark 16.14] ∨

j∈Z
Σ2j,jMGLS ∈ SH(S).
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Example 1.3. Let FEt denote the presheaf that sends an S-scheme X to the groupoid of finite étale
schemes over X and fix E ∈ SH(S). We can construct a motivic diagram

NE : FEt→ SH(−),

which, on a smooth S-scheme Y with structure map pY : Y → S, sends a finite étale Y -scheme f : T → Y
to the motivic spectrum

f⊗(f ◦ pY )∗E ∈ SH(Y ).

The resulting motivic colimit is the free normed spectrum on E as introduced in [BH20, Section 16.4].

1.2. Why motivic colimits? In [BH20], the first author and Hoyois introduced the formalism of motivic
Thom spectra in [BH20, §16] in order to construct normed structures on various cobordism spectra that
appear in motivic homotopy theory; see [BH20, Theorem 16.19, Example 16.22]. Such a structure
packages an enormous amount of coherence data that would have been extremely difficult to write down
by hand. Presenting these cobordism spectra as motivic Thom spectra allow the authors to pin-point
the exact source of the coherence datum for the norm structure on these cobordism spectra, namely the
functoriality of the motivic J-homomorphism; see [BH20, Proposition 16.17] for a precise statement.

The formalism of motivic colimits is a generalization of the formalism of motivic Thom spectra. From
the point-of-view of power operations in motivic homotopy theory, the formalism of motivic colimits
allows us to produce a robust theory of motivic extended and generalized powers which, just as their
classical counterparts, govern the power operations in highly structured ring spectra; see [BMMS86,
Chapter I] for an introduction to how this works in the classical setting.

Classically, if E is a spectrum, then its n-th extended power is given by the formula

Dn(E) := colim
BΣn

E∧n;

see [Lur11a, Construction 2.2.1] for a reference in the language of this paper. Power operations on a
highly structured ring spectrum E are then governed by maps

Dn(E)→ E

and their interactions as n varies. Analogously, our construction of power operations in motivic homotopy
theory requires the construction of such maps.

While the above construction makes sense in any presentably symmetric monoidal ∞-category, such
as SH(S) (as explained in loc. cit.), these categorical extended powers will not produce “genuinely
motivic” power operations which are characterized by their “weight-shifting” property. Indeed, one of
the main theorems in the sequel to this paper is a motivic analog of Steinberger’s deep result [BMMS86,
Chapter III, Theorems 2.2-2.3] which presents the dual Steenrod algebra as monogenically generated
over the Dyer–Lashof algebra. One can build a kind of “naive” motivic Dyer–Lashof algebra out of the
categorical extended powers, but it will not be enough to generate the motivic Steenrod algebra. The fix,
as is done in this paper, is to replace the colimit, taken over the groupoid BΣn, with a motivic colimit
over the étale classifying space of Σn [MV99, Section 4], i.e. the classifying stack of Σn-torsors.

1.3. Motivic colimits in practice. In this paper, we will offer two demonstrations of motivic colimits
in practice. First, we formulate a notion of motivic Kan extensions. This will be used to prove a motivic
analog of the following statement: if C is a semiadditive ∞-category, then each object c ∈ C admits a
canonical map transfer map

c→ c⊕ · · · ⊕ c,
such that its composite with the fold map is given by mutiplication by n. This construction itself will
be useful in our investigation of power operations.

Second, we construct motivic extended and generalized powers. This is an elaboration of Example 1.3
which we briefly explain. For a base scheme S, we denote by FEt the classifying stack of finite étale
morphisms thought of as a presheaf on SmS . We will functorially pair the following two objects

(1) a presheaf on smooth S-schemes X equipped with a map α : X → FEt, and
(2) a motivic spectrum E ∈ SH(S),

to construct a new motivic spectrum

Dmot
X (E) ∈ SH(S),

which deserves to be called the motivic generalized power. For example if X = BétΣn then Dmot
X E

deserves to be called the n-th motivic extended power, which we denote by

Dmot
n (E).
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On the other hand, if we let X = BΣn be the constant presheaf then this construction yields the the
n-th categorical extended powers. The flexibility of choosing the map X → BétΣn, such as the map
BétH → BétΣn induced by a subgroup inclusion H ⊂ Σn, will turn out to be useful, especially in
identifying the various relations that occur within the motivic Dyer–Lashof algebra.

1.4. Equivariant motivic homotopy theory. The “genuine” nature of our construction of motivic
extended powers is most easily explained via equivariant motivic homotopy theory. Two pieces of this
latter theory play prominent roles.

First, recall from [MV99, Section 4.2] that via the construction of Morel–Voevodsky and Totaro, one
can associate to a group scheme G a motivic homotopy type BG which approximates the étale classifying
stack of G. It is via this construction that Voevodsky was able to construct power operations [Voe03]
which exhaust the motivic Steenrod algebra. The motivic-equivariant nature of this construction is
explained in [GH, Section 3.1]. Let SHG(S) be the stable ∞-category of motivic G-spectra (in the sense
of [Hoy17]; see also [GH, Section 2] and Appendix C). Then we have the motivic homotopy orbit [GH,

Definition 7.3] functor which is defined on the subcategory of SHG(S) generated by those schemes with
free G-action (i.e. trivial isotropy groups)

(−)/G : SHG(S)[Ftriv]→ SH(S).

There is a motivic G-space EG whose points classify schemes with free G-action [GH, Definition 3.2] and

its suspension spectrum is an object of SHG(S)[Ftriv], while Σ∞+ EG/G recovers the suspension spectrum

of BG. Smashing with EG yields a colocalization SHG(S)→ SHG(S)[Ftriv] and we define the composite

(−)hG : SHG(S)→ SHG(S)[Ftriv]→ SH(S),

the geometric homotopy orbits functor ; see C.4 for details.
Secondly, as we will show in this paper, the endofunctor that sends a motivic spectrum E to its n-th

power, E∧n, promotes to a functor landing in the Σn-equivariant stable motivic category

SH(S)→ SHΣn(S) E 7→ E∧n.

This is a motivic analog of the norm construction of Hill, Hopkins and Ravenel [HHR16] for the map
∗ → BG induced by the inclusion of the identity element {e} ⊂ G.

With this, we obtain the following equivariant model for the motivic extended powers:

Theorem 1.4 (Corollary 6.11). Let S be a scheme. There is a canonical equivalence:

Dmot
n (E) ' (E∧n)hΣn

An application of this comparison comes in the form of Theorem ??, which establishes an “Ur-Cartan”
relation which we will eventually use to establish the all-important Cartan relation for the motivic dual
Steenrod algebra in the sequel. This last result requires knowing that Dmot

n is op-lax monoidal which is
easily seen for the equivariant model but poses an intimidating coherence problem for Dmot

n itself.

1.5. Organization. In §2 we first define the motivic colimit functors, for diagrams valued in general
presheaves of categories. Then we show that they are in an appropriate sense left adjoint to “constant
diagram” functors (Proposition 2.9), just like ordinary colimits. As applications of this reinterpretation
we study the compatibility of motivic colimits with localizing the category of indexing spaces P(SmS)
and we give an explicit formula for motivic colimits valued in presheaves.

In §3 we show that motivic colimits are compatible with the basic operations f∗, f], f⊗ and also with
changing the category.

In §4 we develop a fragment of a theory of motivic Kan extensions. Our main application is the
construction of certain transfer maps between motivic colimits, provided that C satisfies ambidexterity
for finite étale morphisms (Corollary 4.8).

In §5 we define the motivic extended powers as motivic colimits, and study their properties from this
point of view.

In §6 we show that motivic extended powers can be expressed in terms of genuine homotopy orbits,
and use this to deduce some further properties.

In Appendix A we collect technical preliminaries about ∞-categories of presheaves on locally small
categories. These are surely well-known, but we could not locate references.

In Appendix B we show that certain stacks, when viewed as presheaves on all affine schemes, are left
Kan extended from smooth affine schemes. These are some minor additions to [EHK+20, Appendix A],
which we use to prove that motivic extended powers are stable under base change.

Finally in Appendix C we recall the construction and some basic properties of motivic equivariant
homotopy theory.
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1.6. Notation and conventions. We often have to deal with size issues, arising from the need to
consider presheaves on categories which are not small. Our conventions and some results for dealing
with this issue are set out in Appendix A.1. In summary, by a large ∞-category one without restriction
on the size of either the space of objects or spaces of morphisms. By an ∞-category without further

qualifications we mean a locally small one. We write Spc for the ∞-category of small spaces and Ŝpc

for the ∞-category of large spaces, Cat∞ for the ∞-category of small ∞-categories and Ĉat∞ for the
∞-category of locally small ∞-categories. Given a locally small ∞-category C, we denote by P(C)
the full subcategory of Fun(Cop,Spc) spanned by small colimits of representable functors. We write

P̂(C) = Fun(Cop, Ŝpc) for the category of large space valued presheaves.
By “cocontinuous” or “cocomplete” without qualification we refer to properties with respect to small

colimits.
We only use categorical language invariant under equivalences; in particular by “small” we mean

“essentially small”, and so on.

1.7. Acknowledgements. Parts of this paper, and the power operations project, was written while
the second author was a postdoc at the Center for Symmetry and Deformation at the University of
Copenhagen, supported by the Danish National Research Foundation through the Centre for Symmetry
and Deformation (DNRF92), which also funded a visit by the first author. We would also like to thank
Tomer Schlank and Markus Spitzweck for useful discussions.

2. Motivic colimits: definition and first properties

In this section, we generalize the “motivic Thom spectrum functor” of [BH20, Definition 16.1] by
introducing the notion of motivic colimits. We place ourselves in the following context: we have a
functor

(2.1) C : Smop
S → Ĉat∞

subject to the following assumptions:

• If pX : X → ∗ ∈ SmS is the unique map, then C(pX) : C(S)→ C(X) has a left adjoint pX].
• The category C(S) is cocomplete.

For f : X → Y ∈ SmS we put f∗ := C(f) : C(Y )→ C(X), when no confusion can arise.

Remark 2.2. The situation above is the obvious ∞-categorical analog of an Sm-fibered category in
the sense of [CD19, Section 1.1]; see [Ayo07] for another formulation. We note that this notion is also
discussed in the language of this paper in the thesis of Khan [Kha16]. Examples are aplenty: the unstable
motivic homotopy ∞-category, its S1- or P1-stable variants as well as various categories of modules over
motivic ring spectra, and Voevodsky’s version of the category of motives based on finite correspondences.
We refer the reader to [CD19] for an encyclopedic reference.

2.1. Construction of the motivic colimit functors. We let (SmS)//C denote the source of the carte-
sian fibration (SmS)//C → SmS classified by C, i.e., (SmS)//C is the category of elements of the functor
C. The ∞-category (SmS)//C can be informally described in the following way:

• The objects are pairs (X,EX) with X ∈ SmS and EX ∈ C(S).
• The 1-morphisms (X,EX) → (Y,EY ) consists of a morphism of smooth S-schemes f : X → Y

and a morphism φ : EX → C(f)(EY ) in C(Y ).

To begin our discussions of motivic colimits, we construct a functor

M0 : (SmS)//C → C(S)

which is informally described as follows: it sends an object (X,E) ∈ (SmS)//C to pX]E ∈ C(S).

Construction 2.3. By the Grothendieck construction, the fiber of (SmS)//C → SmS over S identifies
with C(S), yielding an inclusion

MR
0 : C(S)→ (SmS)//C .

By the assumptions on C, this functor admits a left adjoint M0 with the claimed description.

Now, since C(S) is cocomplete, the functor M0 extends to a cocontinuous functor

M : P((SmS)//C)→ C(S);
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see Definition A.2 and Lemma A.1(2). The category P((SmS)//C) is a bit unwieldy, so we will usually
restrict M to a smaller categories. By Lemma A.4, the slice category (SmS)/C → SmS is a cartesian
fibration classifying the functor

Smop
S → Ĉat∞ X 7→ C(X)'.

Composing with the co-unit of the adjunction Ŝpc � Ĉat∞, we obtain a natural transformation C' ⇒ C,
whence a canonical functor (SmS)/C' → (SmS)//C . Passing to presheaves, this induces P((SmS)/C')→
P((SmS)//C). The essential image of this functor is denoted by P(SmS)//C . As the notation suggests,
this can be identified with a right-lax slice category [GR17, Appendix 5.1]. Also note that P((SmS)/C) '
P(SmS)/C , by Lemma A.5.

Definition 2.4. We call the composites

P((SmS)//C)
M−→ C(S)

P(SmS)//C ↪→ P((SmS)//C)
M−→ C(S)

P(SmS)/C' ' P((SmS)/C')→ P((SmS)//C)
M−→ C(S),

the motivic colimit functors for C : Smop
S → Ĉat∞. Depending on context, they are all denoted M , MS

or MC .

Example 2.5 (Constant presheaves). We have the terminal geometric morphism, whose inverse image is
the constant functor and direct image is global sections

c : Spc � P(SmS) : Γ.

Hence, if X ∈ Spc, a map α : cX → C' in P̂(SmS) is equivalent to a functor

ᾱ : X → C(S),

i.e., a X -shaped diagram in the category C(S). Since M is cocontinuous and M(∗ E−→ C) = E one finds

M(α) ' colim
X

ᾱ.

Hence in this case the motivic colimit functor simply computes the colimit of the functor ᾱ.

Remark 2.6. Let (X α−→ C) ∈ P(SmS)/C . Then we have

(X α−→ C) = colim
(x,X)∈(SmS)//X

(X
α(x)−−−→ C)

and consequently

M(X α−→ C) ' colim
(x,X)∈(SmS)//X

(X → S)]α(x).

This generalizes the formula from Example 2.5.

Remark 2.7. Motivic colimits are special cases of relative colimits [Lur17b, §4.3.1]; see [BH20, Remark
16.4].

2.2. The right adjoint. In this section, we describe the motivic colimit functor as a partial left adjoint.
Recall that if F : C → D is a functor, then its partial left adjoint is defined on the full subcategory of
D whose objects are d such that the functor Map(d, F (−)) : C → Spc is representable [Lur17b, Lemma
5.2.4.1].

Example 2.8. Given an ∞-category C, the colimit functor colim : Spc/C → C is a partial left adjoint to
the functor which sends c ∈ C to the constant diagram at c.

Proposition 2.9. The motivic colimit functor M : P(SmS)/C → C(S) is a partial left adjoint of the
functor

C(S)→ P̂(SmS)/C , E 7→ FE ,

where FE ∈ P̂(SmS)/C is the presheaf with FE(X) =
(
C(X)/p∗XE

)'
and the source map to C(X)'.

Proof. Recall that M is obtained as the composite

P(SmS)/C ' P((SmS)/C)→ P((SmS)//C)
M ′−−→ C(S),

where M ′ is the cocontinuous extension of a certain functor M0 : (SmS)//C → C(S). Consequently

M ′ is a partial left adjoint to M∗0 , by Lemma A.3. The functor P̂((SmS)/C) → P̂((SmS)//C) itself is
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left adjoint to pullback. It follows that M is indeed a partial left adjoint, namely to pullback along

M1 : (SmS)/C → (SmS)//C
M0−−→ C(S). This is just a more formal description of the functor E 7→ FE :

given (X,F ) ∈ (SmS)/C (in other words X ∈ SmS and F ∈ C(X)), we have

M∗1 (E)((X,F )) ' MapC(S)(pX]F,E)

' MapC(X)(F, p
∗
XE)

' (C(X)/p∗XE)' ×C(X)' {F}
' MapP̂(SmS)/C'

((X,F ),FE).

�

2.3. Localizing the source. Before stating our next result, we need some preparation. Note that we
have a continuous extension of C which takes the form

Ĉ : P(SmS)op → Ĉat∞.

We also have the source functor U : P(SmS)/C → P(SmS).

Example 2.10. For E ∈ C(S) we have UFE ∈ P̂(SmS) and the functor Map(−, UFE) : P(SmS)→ Ŝpc,
given by the continuous extension of

SmS 3 X 7→ (C(X)/p∗XE)'.

Since passage to slice categories and maximal subgroupoids preserves limits, this continuous extension
is given by

Map(X , UFE) ' (Ĉ(X )/p∗XE)'.

Proposition 2.11. Let W be a set of morphisms in P(SmS) and assume that (the continuous extension
of) C is W -local.

(1) The localization of P(SmS)/C at (the strong saturation of) U−1(W ) exists and is equivalent to

P(SmS)[W−1]/C.

(2) The functor M : P(SmS)/C → C(S) preserves U−1(W )-local weak equivalences and hence factors

through P(SmS)/C → P(SmS)[W−1]/C.

Proof. (1) The localization exists and coincides with the subcategory of W−1(U)-local objects, by
presentability reasons and the adjoint functor theorem. We shall show that (G → C) ∈ P(SmS)/C
is W−1(U)-local if and only if G is W -local. Thus let F1 → F2 ∈ P(SmS) be a W -equivalence,
F2 → C any map and consider the induced map (F1 → C) → (F2 → C) ∈ P(SmS)/C . Note that
Map((Fi → C), (G → C)) is the fiber of Map(Fi, G) → Map(Fi, C). Since C is W -local, the base is
independent of i, and hence

Map((F1 → C), (G→ C)) ' Map((F2 → C), (G→ C))

for all choices of map F2 → C (i.e. base points) if and only if Map(F1, G) ' Map(F2, G). This was to be
shown.

(2) Both statements are equivalent to M∗(C(S)) ⊂ P̂(SmS)[W−1]/C ⊂ P̂(SmS)/C . In other words, by

Proposition 2.9, we need to check that for E ∈ C(S) the big presheaf FE ∈ P̂(SmS) is W -local. That is,
for α : X → Y ∈W we know that α∗ : C(Y)→ C(X ) is an equivalence, and by Example 2.10 we need to

prove that
(
C(Y)/p∗YE

)'
→
(
C(X )/p∗XE

)'
is an equivalence. Since p∗XE ' α∗p∗YE, this is clear. �

Example 2.12. Suppose that C : Smop
S → Ĉat∞ preserves finite products. Then M : P(SmS)/C → C(S)

factors through P(SmS)/C → PΣ(SmS)/C . Indeed PΣ(SmS) is obtained from P(SmS) by localizing at
the set of map ∅ → r∅ and rX

∐
rY → rX

∐
Y , where r : SmS → P(SmS) denotes the yoneda functor, and

these correspond in the continuous extension of C precisely to C(∅)→ ∗ and C(X
∐
Y )→ C(X)× C(Y ).

Example 2.13. If τ is a topology on SmS and C is a τ -sheaf, then M factors through P(SmS)/C →
Shvτ (SmS)/C . A similar remark applies for motivic/A1-localization. However, in our examples of inter-

est, C is not A1-invariant (for example, SH(X×A1) is not equivalent to SH(X); [BH20, Remark 16.10])
and thus the motivic colimit functor is not A1-invariant in the diagram variable.
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2.4. The case C(X) = P(SmX). We now investigate motivic colimits for the functor C(−) = P(Sm(−)),
i.e., the functor

C : Smop
S → Ĉat∞;X 7→ P(SmX).

In this case, we can give a formula for the motivic colimit functor; we do this in Corollary 2.15.
Consider the composite functor

γ : SmS
c−→ (SmS)//Sm(−)

↪→ (SmS)//P(Sm(−)).

Here c is the functor X 7→ (X ∈ SmS , X ∈ SmX), which we can write down by hand since (SmS)//Sm(−)

is a (2, 1)-category.

Proposition 2.14. The motivic colimit functor M : P((SmS)//P(Sm(−))) → P(SmS) is right adjoint to
the cocontinuous extension

γ : P(SmS)→ P((SmS)//P(Sm(−))).

Proof. The composite Mγ is a colimit preserving endofunctor of P(SmS) and hence determined by its

restriction to SmS . Since MγX = M(X
X−→ P(SmX)) = X we find that Mγ ' id; we shall show that

this equivalence is a counit of adjunction. In other words for X ∈ P(SmS) and G ∈ P((SmS)//P(Sm?))
we need to show that Map(γX ,G) ' Map(X ,MG). We may assume that X = X ∈ SmS ; thus X, γX
are completely compact1 and we may assume that G = (U,E) with U ∈ SmS and E ∈ P(SmY ). There
is a canonical map pU]E → pU]∗ = U inducing P ′ : MapP(SmS)(X, pU]E) → MapP(SmS)(X,U) '
MapSmS

(X,U). From this we obtain the following commutative diagram

Map(SmS)//P(Sm(−))
((X, ∗), (U,E)) MapP(SmS)(X, pU]E)

MapSmS
(X,U),

M

P
P ′

where P is the tautological functor (SmS)//P(Sm) → SmS . In order to prove that the top map is
an equivalence, it suffices to prove that it induces an equivalence on the fiber over any point f ∈
MapSmS

(X,U). The fiber of P over f is MapP(SmX)(∗, f∗E) ' MapP(SmS)/X
(X,X ×f,U pU]E). Here

we have used that SmX → (SmS)/X is fully faithful, and hence so is its cocontinuous extension. This is
the same as the fiber of P ′ over f , essentially by definition. This concludes the proof. �

Corollary 2.15. Let X ∈ P(SmS) and α : X → P(Sm(−)), in other words α ∈ P(SmS)/P(Sm(−)). Then
for U ∈ SmS we have

M(α)(U) ' colim
X (U)

αU (−)(U).

Here αU (−) : X (U)→ P(SmU ) is the functor obtained from α by taking sections over U .

Proof. By Proposition 2.14 we have

M(α)(U) ' MapP(SmS)//P(Sm(−))
((U, ∗), α).

The result now follows from the formula for computing mapping spaces in lax slice categories. Alterna-
tively we can argue as follows. Since (U, ∗) is completely compact and the colimit functor Spc/Spc → Spc
is cocontinuous (being the cocontinuous extension of a functor ∗/Spc → Spc), both sides are stable under
colimits in the α variable. Since P(SmS)/P(Sm(−)) → P(SmS)//P(Sm(−)) preserves colimits and the left

hand side is generated under colimits by objects of the form (X,E ∈ P(SmX)), the problem reduces
to α of this form. In this case we have seen in the proof of Proposition 2.14 that there is a carte-
sian fibration in spaces P : Map(SmS)//P(Sm)

((U, ∗), (X,E))→ MapSmS
(U,X). This classifies the functor

MapSmS
(U,X) → Spc, f 7→ MapP(SmX)(∗, f∗E) = αU (f)(U). The source of a cartesian fibration over

an ∞-groupoid is a model for the colimit of the associated functor by (the dual of) [Lur17b, Corollary
3.3.3.3], so the result follows. �

Example 2.16. Let X ∈ P(SmS). We define X∗ ∈ P(SmS)/P(Sm(−)) as the composite X → ∗ →
P(Sm(−))

', where the second map picks out the object ∗ ∈ P(SmS). By Corollary 2.15 we find

M(X∗)(U) ' colim
X (U)

∗ ' X (U),

whence M(X∗) ' X . (This is also easy to see directly from the definition of M .)

1Let us that C is a large ∞-category (using the convention of Appendix A) then an object X ∈ C is completely compact

if Map(X,−) : C → Ŝpc commutes with all small colimits.
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3. Motivic colimits and exchange transformations

3.1. Changing C. Suppose given η : C → D ∈ Fun(Smop
S , Ĉat∞). Under suitable assumptions there are

induced motivic colimit functors which we denote byMC : P((SmS)//C)→ C(S) andMD : P((SmS)//D)→
D(S). Passing to the associated cartesian fibrations, η induces η̄ : (SmS)//C ⇒ (SmS)//D. We also denote
by η̄ : P((SmS)//C)→ P((SmS)//D) the cocontinuous extension.

Remark 3.1. Since (SmS)/C ' (SmS)//C' , the commutative diagram

C' η'−−−−→ D'y y
C η−−−−→ D

in Fun(Smop
S , Ĉat∞) induces a commutative diagram

(SmS)/C
η̄−−−−→ (SmS)/Dy y

(SmS)//C
η̄−−−−→ (SmS)//D.

Construction 3.2. Suppose given a square of ∞-categories

C1
F1−−−−→ C2

G1

x G2

x
C3

F2−−−−→ C4,
commuting up a specified equivalence α. Suppose further that G1 has a left adjoint M1 and G2 has a left
adjoint M2. Then there is a canonical exchange transformation (also usually called the Beck-Chevalley
transformation; see also [Lur17a, Definition 4.7.4.13]) M2F1 ⇒ F2M1, namely

M2F1
u⇒M2F1G1M1

α'M2G2F2M1
c⇒ F2M1.

Proposition 3.3. Let C,D : Smop
S → Ĉat∞ satisfy the assumptions of (2.1). Suppose that we have a

morphism η : C → D such that the functor ηS : C(S) → D(S) preserves all small colimits. Then there
are canonical exchange transformations:

(3.4) ex]η : pDX]ηX ⇒ ηSp
C
X] : C(X)→ D(S),

and

(3.5) exMη : MDη̄ ⇒ ηSM
C : P((SmS)//C)→ D(S).

Moreover, if each ex]η is an equivalence, then so is exMη.

Proof. The exchange transformation ex]η of (3.4) comes directly from Construction 3.2. We proceed to
construct (3.5). Recall Construction 2.3 of MR

0 . By functoriality of the Grothendieck construction we
have a commutative diagram

C(S)
MR

0−−−−→ (SmS)//C

ηS

y η̄

y
D(S)

MR
0−−−−→ (SmS)//D

and hence Construction 3.2 supplies us with an exchange transformation

ex0,Mη : MD0 η̄ ⇒ ηSM
C
0 : (SmS)//C → D(S).

The transformation ex0,Mη extends canonically to a transformation

exMη : MDη̄ ⇒ ηSM
C : P((SmS)//C)→ D(S)

(using Lemma A.1(2)); we use the fact that ηS preserves small colimits to ensure that the extension
of (ηSM

C
0 ) to P((SmS)//C) agrees with the composite ηS ◦MC . The last statement follows since, by

construction, if (X,EX) ∈ P((SmS)//C) is representable then exMη(X,EX) ' ex]η(EX).
�
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Example 3.6. We have a sequence of natural transformations in Fun(Smop
S , Ĉat∞)

P(Sm(−))⇒ PΣ(Sm(−))⇒ Spc(−)⇒ Spc(−)∗ ⇒ SH(−)⇒ DM(−,Z)⇒ DM(−,Z/2),

where each transformation is the obvious one, and satisfies all the assumptions of Proposition 3.3. In
other words, passage from any category in the list to one further to the right is compatible with motivic
colimits (just like it is compatible with ordinary colimits).

3.2. Changing S. Suppose that C is defined on a larger category than SmS , e.g. C : Schop → Ĉat∞.

For S ∈ Sch write CS : SmS → Sch→ Ĉat∞ for the restriction of C to SmS . If CS satisfies the hypotheses
of (2.1), there is an induced motivic colimit functor

MS : P((SmS)/CS )→ C(S).

for each S ∈ Sch. In this section, we fix such as C study the variance of of MS as S varies, i.e, if
f : T → S ∈ Sch then we compare MS and MT . We first construct

f∗ : (SmS)//CS → (SmT )//CT .

It can be informally described as (X,E) 7→ (X ×S T, f∗E).

Construction 3.7. We have a morphism of schemes f : T → S. The functor f] : SchT → SchS
induces by functoriality of the Grothendieck construction (on the base, as in [GHN17, Corollary A.31])
a morphism (SchT )//C → (SchS)//C , informally described as (X ∈ SchT , E ∈ C(X)) 7→ (X ∈ SchS , E ∈
C(X)). This admits a right adjoint (SchS)//C → (SchT )//C informally described as (X,E) 7→ (X ×S
T, f∗E). The desired functor f∗ is obtained by restricting to the full subcategories (Sm(−))//C(−)

⊂
(Sch(−))//C .

Proof. In order to see that the right adjoint exists and determine its value, let Y ∈ SchS and F ∈ C(Y ).
A morphism from f](X,E) to (Y, F ) consists of an S-morphism p : X → Y and a map E → p∗F in
C(X). This is the same data as a T -morphism p′ : X → Y ×S T together with a map E → p′∗q∗F , where
q is the projection Y ×S T → Y . Consequently f∗(Y, F ) is represented by (Y ×S T, q∗F ), as desired. �

Variant 3.8. In precisely the same way, we construct f∗ : (SmS)/CS → (SmT )/CT , which fits into a
commutative diagram

(SmS)/CS
f∗−−−−→ (SmT )/CTy y

(SmS)//CS
f∗−−−−→ (SmT )//CT .

Proposition 3.9. Suppose that we have a functor C : Schop
S → Ĉat∞ such that

(1) For each T ∈ SchS the category C(T ) admits small colimits.
(2) For each f : T ′ → T ∈ SchS the functor f∗ : C(T )→ C(T ′) preserves small colimits.
(3) If f is smooth then f∗ has a left adjoint f].

Let f : T ′ → T ∈ SchS. Consider the diagram

P((SmT )//CT )
MT−−−−→ C(T )

f∗
y f∗

y
P((SmT ′)//CT ′ )

M ′T−−−−→ C(T ′),

where the left vertical morphism f∗ is the cocontinuous extension of the functor

f∗ : (SmS)//CT → (SmT )//CT ′

defined in Construction 3.7. Then,

(1) there is a canonical exchange transformation

ex∗M : MT ′f
∗ ⇒ f∗MT : P((SmS)//CS )→ C(T ).

(2) If C satisfies smooth base change over T , i.e. for any smooth morphism g : X → T the exchange
transformation ex∗] : g′]f

′∗ → f∗g] : C(X) → C(T ′) is an equivalence, then also ex∗M is an
equivalence.
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Proof. (1) By constriction the functor f∗ : (SmS)//CT → (SmT )//CT ′ maps the fiber above T to the fiber
above T ′ and induces the functor f∗ : C(T ) → C(T ′) on these fibers. In other words, the following
diagram commutes

C(T )
MR

0T−−−−→ (SmT )//CT

f∗
y f∗

y
C(T ′)

MR
0T ′−−−−→ (SmT ′)//CT ′

Construction 3.2 supplies us with an exchange transformation

ex∗0M : M0T ′f
∗ ⇒ f∗M0T ,

which extends canonically to a transformation

ex∗M : MT ′f
∗ ⇒ f∗MT : P((SmT )//CT )→ C(T ′)

(using Lemma A.1(2)); we use the fact that f∗ : C(T ) → C(T ′) preserves small colimits to ensure that
the extension of f∗MT to P((SmT )//C) agrees with the composite f∗ ◦MT .

(2) It is then enough to show that ex∗M is an equivalence on all objects (X,E) ∈ (SmT )//CT (i.e.
X ∈ SmT and E ∈ C(X)). It follows from the construction that this is precisely ex∗] (E). �

Remark 3.10. Each of the functors Smop
S → Ĉat∞ from Example 3.6 has an evident extension to Schop

satisfying all the assumptions of Proposition 3.9. In other words, motivic colimits in any of these
categories commute with arbitrary base change (just like ordinary colimits).

3.3. Interaction with f]. Let f : T → S ∈ SmS . We have a cartesian square

(SmT )//CT −−−−→ (SmS)//Cy y
SmT

f]−−−−→ SmS .

We denote the top horizontal arrow by f] : (SmT )//CT → (SmS)//C .

Proposition 3.11. Let f : T → S ∈ SmS.

(1) The cocontinuous extension f] : P((SmT )//CT )→ P((SmS)//C) induces a commutative diagram

P(SmT )/CT −−−−→ P(SmT )//CT −−−−→ P((SmT )//CT )

f]

y f]

y f]

y
P(SmS)/C −−−−→ P(SmS)//C −−−−→ P((SmS)//C).

(2) The functor f] : P((SmT )//CT )→ P((SmS)//C) has a right adjoint f∗ which satisfies f∗((SmS)//C) ⊂
(SmT )//CT . In fact for X ∈ SmS and a ∈ C(X) we have f∗(X, a) = (X ×S T, p∗a) where
p : X ×S T → X is the canonical projection. Moreover f∗ : P((SmS)//C) → P((SmT )//CT )
restricts to f∗ : P(SmS)//C → P(SmT )//CT and is compatible with f∗ : P(SmS)/C → P(SmT )/CT .

(3) Suppose that MS and MT exist. Then there is a canonical isomorphism ex]M : f]MT 'MSf] ∈
Fun(P((SmT )//CT ), C(S)).

Proof. (1) Since P(SmT )//CT → P((SmT )//CT ) is fully faithful by definition, and similarly for S, it suffices
to construct the outer commutative rectangle. Since all functors are cocontinuous, it suffices to construct

(SmT )/CT −−−−→ (SmT )//CTy y
(SmS)/C −−−−→ (SmS)//C .

This is just obtained by pulling back the map C' → C along f] : SmT → SmS , and taking the associated
cartesian fibrations.

(2) This is a special case of Construction 3.7.
(3) In order to construct ex]M : f]MT ⇒ MSf], we may by adjunction construct MT ⇒ f∗MSf].

This we take to be the composite MT
MT η
===⇒MT f

∗f]
ex∗Mf]====⇒ f∗MSf], where η is the unit of the adjunction

f] a f∗ and ex∗M is from Proposition 3.9. In order to prove that ex]M is an isomorphism, since all functors
involved are cocontinuous, we may restrict to (SmT )/C . Thus let p : X → T ∈ SmT and E ∈ C(X).
Then f]MT (X,E) ' f]p]E ' (fp)]E 'MSf](X,E). This concludes the proof. �
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Remark 3.12. The functor f] : P(SmT )/CT → P(SmS)/C can be informally described as (X → CT ) 7→
(f]X → f]CT

α−→ C), where α : f]CT → C corresponds by adjunction to the isomorphism CT → f∗C.

3.4. Interaction with norms. In this subsection, we will study the situation where C is provided with
an additional covariant functoriality for finite étale morphisms. In other words, we assume given a
commutative diagram

Smop
S Span(SmS , all, fét)

Ĉat∞.

C
C⊗

In this generality, we denote the extra functoriality by p⊗. This could be a norm map as constructed in
[BH20], or it could be given by p] or p∗, for example.

We denote by NAlg(C⊗) the∞-category of sections of the cocartesian fibration classified by C⊗, which
are cocartesian over Smop

S ↪→ Span(SmS , all, fét). c.f. [BH20, §7].
We now wish to repeat the discussion of §3.3, with p⊗ in place of f]. Thus let p : T → S ∈ FEtS .

We have a functor p∗ : P(SmT )//CT → P(SmS)//p∗CT . We also have a map α : p∗CT → C, given on
sections by αX = pX⊗ : p∗CT (X) ' C(p∗X) → C(X). Postcomposing p∗ with α we obtain a functor
p⊗ : P(SmT )//CT → P(SmS)//C .

Example 3.13. Let X ∈ SmT such that the Weil restriction RpX ∈ SmS exists (e.g. X ∈ SmQPT ). Let
E ∈ C(X). Then p⊗(X,E) ' (RpX, r⊗e

∗E), where e : p∗RpX → X is the counit of adjunction, and
r : p∗RpX → RpX is the projection.

Proposition 3.14. Let p : T → S be finite étale and assume that MS ,MT exist. Assume that each
q⊗ : C(X)→ C(Y ) (for q : X → Y ∈ SmS finite étale) preserves sifted colimits. Let P ⊂ P(SmT )//CT be
the essential image of PΣ(SmQPT )/CT .

(1) There is a canonical exchange transformation exM⊗ : MSp⊗ ⇒ p⊗MT ∈ Fun(P, C(S)).
(2) Suppose that C satisfies the distributivity law of [BH20, Proposition 5.12]. Then exM⊗ is an

isomorphism.

Proof. The category P is equivalent to a full subcategory of PΣ((SmQPT )//CT ). We have a functor
p̃⊗ : (SmQPT )//CT → (SmQPS)//C given by (X,E) 7→ (RpX, r⊗e

∗E). The sifted-cocontinuous extension
of p̃⊗ is compatible with the functor p⊗ we have constructed before. These observations together imply
that we may replace P by (SmQPT )//CT . Then for (1) we need to construct (RpX → S)]r⊗e

∗E →
p⊗(X → T )]E, naturally in (X,E) ∈ (SmQPT )//CT . For this we can take the transformation Dis]⊗ of
[BH20, Proposition 5.12]. For (2), we need to show that the transformation is an equivalence, which is
the assumption. �

Remark 3.15. By the main result of [EH20], the assumption that C satisfies distributivity is equivalent
to promoting the functor C from a functor out of a category of spans to the category of bispans; see
[EH20, Section 3.5] for a discussion in the context of motivic homotopy theory.

Remark 3.16. We were being slightly less careful in this subsection than in others, because actually
the following stronger statement is true (under slightly stronger assumptions): the assignment X 7→
PΣ(SmQPX)//CT can be made functorial in Span(SmS , all, fét), and then M becomes a (strong) natural
transformation

PΣ(SmQP(−))//C(−)
⇒ C⊗ ∈ Fun(Span(SmS , all, fét), Ĉat∞).

This is proved using the same arguments as in [BH20, first half of §16.3].

4. Motivic left Kan extensions and FEt-semiadditivity

In this section, we give the first working demonstration of motivic colimits. We will provide the motivic
analog of the following construction. Suppose that C is a semiadditive ∞-category, i.e., a pointed ∞-
category with finite products and coproducts such that for any X,Y ∈ C, the canonical map

X q Y → X × Y
is an equivalence; we denote the corresponding biproduct by X⊕Y . Any semiadditive∞-category enjoys
the following features [Lur11b, Section 2.1]:

(1) for any morphism of Kan complexes f : T → S with discrete fibers with finitely many compo-
nents, the pullback functor f∗ : CS → CT admits a right adjoint (resp. a left adjoint):

f∗ (resp. f!) : CT → CS .
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(2) There is a norm map

Nmf : f! ⇒ f∗,

adjoint to an ambidextrous transformation

f∗f! ⇒ id .

The former transformation is furthermore invertible.
(3) Suppose that p : S → ∗, q : T → ∗ be the canonical maps. Applying the functor p! to the

transformation

id→ f∗f
∗ ' f!f

∗,

we get a map

trf : p! → p!f!f
∗ ' q!f

∗,

which is usually called the transfer along f . One of its key features is as follows: if X ∈ CS , then

p!X → p!f
∗X ' p!f!f

∗X
p!η−−→ p!X,

is invertible after inverting the “multiplication by n” endomorphism in C (which is defined because
C is semiadditive).

In this section, we will paint a motivic analog of the above picture; our main result, Corollary 4.8,
proves a motivic analog of the third property above. Given the ubiquity and utility of these constructions
in classical homotopy theory (for example in the formulation of topological cyclic homology of Nikolaus
and Scholze [NS18]), we hope that our formalism will be independent interest.

Let us first work towards the motivic analog of semiadditivity. We call a morphism f : X → Y ∈
P(SmS) finite étale (respectively a clopen immersion) if it is representable by a finite étale morphism
(respectively clopen immersion) of schemes, i.e., if for every Y ∈ SmS and every morphism Y → Y
the pullback X ×Y Y → Y is isomorphic to a finite étale morphism (respectively clopen immersion) of
schemes. Note that if f is finite étale (respectively a clopen immersion) then ∆f : X → X ×Y X is
a clopen immersion (respectively an isomorphism), since the same holds for schemes and colimits are
stable under pullback in the ∞-topos P(SmS).

Remark 4.1. It is possible to iterate the above definition in an analogous fashion to truncativity of maps
in classical homotopy theory. From this point-of-view, a clopen morphism should be called (−1)-finite
étale while a finite étale morphism should be called 0-finite étale. A 1-finite étale morphsim should then
be a morphism of stacks X → Y whose diagonal is finite étale. This notion is not very interesting if the
stacks are schemes, but is already interesting for maps of Deligne-Mumford stacks (for example, BG→ ∗
for G a finite étale group scheme). With this, one can develop a notion of higher FEt-semiadditivity,
which we postpone to a sequel.

Definition 4.2. Suppose that we are given Ĉ : P(SmS)op → Ĉat∞.

(1) We say that Ĉ has FEt-colimits if for every (relative) finite étale morphism f : X → Y the

functor f∗ : Ĉ(Y)→ Ĉ(X ) admits a left adjoint f].
(2) We say that the FEt-colimits are compatible with base change if for any cartesian square

X ′ g′−−−−→ X

f ′
y f

y
Y ′ g−−−−→ Y

with f finite étale, the canonical exchange transformation f ′]g
′∗ ⇒ g∗f] is an equivalence.

(3) Given a morphism f : X → Y, form the square

X ×Y X
f1−−−−→ X

f2

y f

y
X f−−−−→ Y

Suppose that C has FEt-colimits compatible with base change. We say that Ĉ is semiadditive if
for every clopen immersion f : X → Y the canonical, invertible transformation

f∗f] ' f2]f
∗
1
'−→ id

exhibits f] as right adjoint to f∗.
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Here the first equivalence is because Ĉ has FEt-colimits which are compatible with base change
and the second is because f is a clopen immersion, so the projections f1,2 : X ×Y X → X are
isomorphism.

(4) We say that Ĉ is FEt-semiadditive if it is semiadditive and, in addition, for every finite étale
morphism f : X → Y with diagonal ∆, the canonical transformation

(4.3) f∗f] ' f2]f
∗
1 ⇒ f2]∆]∆

∗f∗1 ' id

exhibits f] as right adjoint to f∗. Here we use that ∆ is clopen, so ∆] is right adjoint to ∆∗ by
the semiadditivity assumption.

We say that Ĉ is FEt-semiadditive on schemes if (4) holds whenever X ,Y ∈ SmS , and analogously for
the other definitions.

Remark 4.4. Suppose that Ĉ is FEt-semiadditive and f : X → Y is a finite étale morphism, then the
transformation (4.3) is adjoint to a transformation

Nmmot
f : f] → f∗

This is a generalization of the norm construction for additive ∞-categories as in [Lur11b, Section 2.1]
and we call it the motivic norm transformation along f .

Example 4.5. SH(−) is FEt-semiadditive. Indeed the transformation f∗f] ⇒ id coincides (by construc-
tion) with the ambidexterity transformation [Hoy17, (5.20)], which exhibits f] as right adjoint to f∗ by
[Hoy17, Theorem 6.9]. This property then persists for modules over any (highly structured) motivic ring
spectrum such as HZ,KGL,MGL and the other usual suspects.

Lemma 4.6. Suppose given C : Smop
S → Ĉat∞ and write Ĉ for its continuous extension to P(SmS)op.

Suppose that C has FEt-colimits stable under base change (respectively is semiadditive, respectively is

FEt-semiadditive), on schemes. Then Ĉ has FEt-colimits stable under base change (respectively is semi-
additive, respectively is FEt-semiadditive).

Proof. Recall that given a diagram F : Iop → Ĉat∞, its limit can be modelled as the cartesian sections
of the associated fibration [Lur17b, Corollary 3.3.3.2]:

lim
I
F ⊂ SectI

(
I//F

)
.

Suppose given a natural transformation α : F → G ∈ Fun(Iop, Ĉat∞) and suppose that each component
α(i) : F (i) → G(i) admits a left adjoint, compatibly with the transition maps. Then the associated
morphism of fibrations is a relative right adjoint [BH20, Lemma D.3, Remark D.4] and hence the induced
cartesian morphism of cartesian fibrations has a left adjoint β computed objectwise [BH20, Lemma D.6,
Remark D.4]. Since the left adjoints of the α(i) are compatible, β preserves the subcategory of cartesian
sections. Thus, under the above assumptions, limI α : limI F → limI G has a left adjoint computed in
the obvious way in terms of the left adjoints of the α(i).

Now suppose given a finite étale morphism f : X → Y. Since Ĉ is continuous we have

Ĉ(Y) ' lim
T→Y

C(T ) and Ĉ(X ) ' lim
T→Y

C(T ×Y X ),

where the limits are indexed by (the opposite of) I = (SmS)//Y . Applying the above discussion, we

deduce that f∗ : Ĉ(Y) → Ĉ(X ) admits a left adjoint f] computed objectwise. All other claims are
immediate from this description. �

Note that the above proof shows that Ĉ(X ) can be identified with the (non-full) subcategory of
P(SmS)//C ⊂ P((SmS)//C) where the source is identified with X .

Proposition 4.7. Suppose that motivic colimits exist in C. The canonical functor C(S)→ Ĉ(X ) (pullback
along p : X → ∗) admits a left adjoint p], given by

Ĉ(X )→ P((SmS)//C)
M−→ C(S).

Proof. It suffices to understand the left adjoint of

p̃∗ : C(S)
p∗−→ Ĉ(X ) ⊂ SectX (C).

Let C0 be the constant functor at C(S). Then p̃∗ factors as

C(S)
F−→ SectX (C0)

G−→ SectX (C).
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Arguing as in the proof of Lemma 4.6, the functor G has a left adjoint computed objectwise, and under
the equivalence

SectX (C0) ' Fun((SmS)op
//X , C(S))

the functor F has as left adjoint the colimit functor. Using Remark 2.6, the left adjoint of p̃∗ thus
coincides with M . �

We call functors

p] : Ĉ(X )→ C(Y)

left adjoint to p∗ motivic left Kan extension functors along p. We have seen that p] exists if either
p : X → Y is finite étale and C has FEt-colimits stable under base change (Lemma 4.6) or Y = S
(Proposition 4.7). This terminology is justified by the characterization of left Kan extensions as in
[Lur17b, Proposition 4.3.3.7]. It is possible to formulate a more general theory of motivic left Kan
extensions, which we leave to future work. For now we have the following application.

Corollary 4.8. Let C be FEt-semiadditive, f : X → Y ∈ P(SmS) be a finite étale morphism and Y D−→ C.
Then there is a canonical transfer morphism trf : M(D)→ M(Df). Moreover, if f is of degree n, and
Z ∈ C(S) such that for every finite étale morphism f0 : X → Y ∈ SmS of degree n and every E ∈ C(Y )
the canonical map Z ⊗ E → Z ⊗ f0]f

∗
0E → Z ⊗ E is an equivalence, then so is Z ⊗ trf , provided that

either Z = 1 or C satisfies the smooth projection formula.

Proof. We can view D as an object of Ĉ(Y) and similarly Df as an object of Ĉ(X ); then Df ' f∗(D).
By Lemma 4.6 the functor f∗ has an ambidextrous adjoint f], whence there is a canonical map

D → f]f
∗D ' f]Df.

Applying p] and using Proposition 4.7 we obtain trf . Since a morphism in a section category is an
equivalence if and only if it is so objectwise, the degree n assumption implies that Z ⊗D → Z ⊗Df →
Z ⊗D is an equivalence; the moreover part follows. �

Remark 4.9. Suppose that Y = Y,X = X are (represented by) smooth schemes. Then α corresponds
to an object E ∈ C(X), f ◦ α corresponds to f∗E, and f : g]f]E → g]E, where g : X → S is the
structure map, is the canonical map. Then trg : g]E → g]f]E is supposed to be g] of a canonical map
E → f]f

∗E, namely the (finite) étale transfer (see e.g. [Bac18, Section 4] [ROsr08, Section 2.3] for the
case C(X) = SH(X)). Reverting to the general case, we can write X as a colimit of smooth schemes
X, and then Y is the corresponding colimit of smooth S-schemes fX : f−1(X)→ X finite étale over X.
Informally, transfer trf is the colimit of the transfers trfX ; the formalism of motivic colimits makes this
precise.

5. Motivic extended and generalized powers

In this section, we give the second working demonstration of motivic colimits by constructing motivic
extended and generalized powers. Fix a functor

C⊗ : Span(SmS , fét, all)op ' Span(SmS , all, fét)→ Ĉat∞

as in Section 3.4.
For any scheme X, let us denote by FEt'X the groupoid whose objects are finite étale morphisms

f : Y → X and the morphisms are isomorphisms over X. The starting point for the construction of
motivic extended and generalized powers is a functor of the form

N : P(SmS)/FEt' × C(S)→ P(SmS)//C ,

where FEt' for the presheaf of groupoids

FEt' : Smop
S → Spc, X 7→ FEt'X .

We will call this functor the fundamental diagram. This functor is informally described as follows: it
sends the pair

(X → FEt', E ∈ C(S))

to the diagram

X → C ∈ P(SmS)//C ,

which on sections over Y ∈ SmS is given by X (Y )→ FEt'Y
NE(Y )−−−−→ C(Y ). Here, NE(Y ) : FEt'Y → C(Y )

sends a finite étale morphism p : U → Y to p⊗EU .
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5.1. The fundamental diagram. Let us now make the above construction precise. Recall that given
a small ∞-category D, the Grothendieck construction establishes an equivalence [Lur17b, Section 3.2]

(5.1)

∫
: Fun(Dop, Ĉat∞) ' CartD.

Here the right hand side has as objects the cartesian fibrations over D. If we have cartesian fibrations
E1, E2 over D, then the space of maps in the CartD is defined as

Mapcart
D (E1, E2) = Funcart

D (E1, E2)',

where

Funcart
D (E1, E2) ⊂ FunD(E1, E2) = Fun(E1, E2)×Fun(E1,D) {E1}

is the full subcategory on those functors preserving cartesian edges.
The next lemma follows once we know that the equivalence (5.1) promotes to an equivalence of (∞, 2)-

categories, though we do not need to use this language. To formulate it, consider the Yoneda functor

R : D → Fun(Dop,Spc) ⊂ Fun(Dop, Ĉat∞).

We denote by Rd → D, the cartesian fibration obtained by performing the Grothendieck construction
on R(d), i.e., Rd is the slice category D/d → Dop.

Lemma 5.2. For any d ∈ D, evaluation at (d, id) defines an equivalence

Funcart
D (Rd, E) ' Ed,

where Ed is the fiber over d.

Proof. This is a special case of [EH20, Lemma 2.5.7] where L is considered to be all morphsims.
�

Construction 5.3. Consider the composite

N†0 : C(S) ' Funcart
Span(SmS ,fét,all)(RS ,Span(SmS , fét, all)//C)

→ Funcart
SmS

((SmS)//FEt' , (SmS)//C) ⊂ Fun((SmS)//FEt' , (SmS)//C).

Here the equivalence is given by Lemma 5.2 and the map is restriction from fibrations over Span(SmS , fét, all)
to fibrations over SmS , using that the functor represented by S in Span(SmS , fét, all) is exactly FEt'.
By adjunction this corresponds to

N0 : (SmS)//FEt' × C(S)→ (SmS)//C .

The composite

N : P(SmS)/FEt × C(S)→ P((SmS)//FEt' × C(S))
P(N0)−−−−→ P((SmS)//C)

takes values in P(SmS)//C (indeed this is true for N0, and P(SmS)//C ⊂ P((SmS)//C) is closed under
colimits).

Remark 5.4. By construction, N is a cocontinuous functor in the first variable. Hence for (α : X →
FEt, E) ∈ P(SmS)/FEt × C(S) we have

N(α,E) = colim
p′∈(SmS)//X

(T, α(p′)⊗(EU )),

where we write α(p′) : U → T ∈ FEt.

For any scheme S, we define the fundamental diagram as the functor

P(SmS)/FEt' × C(S)
N−→ P(SmS)//C .

As explained in the next section, the motivic extended powers will be constructed out of the fundamental
diagram.
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5.2. The definition of motivic extended powers. We now use the fundamental diagram functor N
to define motivic extended and genearlized powers, by taking appropriate motivic colimits. In preparation
of that, we denote by FEt',n ⊂ FEt the subpresheaf of groupoids spanned by finite étale schemes of
rank n.

Lemma 5.5. For any scheme S, we have a canonical equivalence

FEt',n|SmS
' BétΣn ∈ P(SmS).

Proof. This follows from the standard correspondence between finite étale morphisms of degree n and
Σn-torsors [LMB00, (6.1.3)]. �

Definition 5.6. Suppose that C(S) admits small colimits. We define the generalized motivic extended
power functor as the composite

(5.7) Dmot
gen : P(SmS)/FEt' × C(S)

N−→ P(SmS)//C
M−→ C(S).

We adopt the following notation for evaluating the above bifunctor on on objects of P(SmS)/FEt' :

(1) For X ∈ P(SmS)/FEt' fixed, we denote the functor Dmot
gen (X ,−) by

Dmot
X : C(S)→ C(S);

(2) if X = FEt',n, we denote Dmot
X by

Dmot
n : C(S)→ C(S);

(3) if G→ Σn is a group homomorphism, and X ∈ P(SmS)/FEt' is given by the composite BétG→
BétΣn ' FEt',n → FEt, then we denote Dmot

X by

Dmot
G : C(S)→ C(S);

(4) if BG is the constant presheaf, then there is a canonical map BG→ BΣn → BétΣn, and we put

Dmot
BG =: Dnaive

BG : C(S)→ C(S),

and in particular
Dmot
BΣn =: Dnaive

n : C(S)→ C(S).

Example 5.8. Since the motivic colimit functor is cocontinuous, it follows from Remark 5.4 that

Dmot
X (E) ' colim

p′∈(SmS)//X
p⊗EU ,

where α(p′) = p : U → X.

Example 5.9. It follows from Example 2.5 that Dnaive
G E is given by the ordinary homotopy G-orbits of

the G-action on E⊗n. Since Dmot
gen is functorial in X , we obtain natural transformations Dnaive

G ⇒ Dmot
G .

Example 5.10. We have Dmot
H1×H2

(E) ' Dmot
H1

(E)∧Dmot
H2

(E). Indeed this is a consequence of Proposition
3.14, noting that Bét(H1 ×H2) ' Bét(H1)×Bét(H2).

5.3. Basic properties. We now explain how the construction above interacts with various categorical
operations.

5.3.1. Extended powers and colimits.

Proposition 5.11. (1) The functor Dmot
gen : P(SmS)/FEt' × C(S) → C(S) preserves colimits in the

factor P(SmS)/FEt' .
(2) If each of the functors f∗, p⊗ preserves colimits of some shape K, then Dmot

gen preserves colimits
of shape K in the factor C(S).

Proof. (1) Clear from cocontinuity of motivic colimits and Remark 5.4.
(2) Since colimits commute, this follows from Example 5.8. �

Example 5.12. In each of the cases from Example 3.6, the functors p⊗, f
∗ preserve sifted colimits, and

hence so does Dmot
X .

Example 5.13. If C : Smop
S → Ĉat∞ preserves finite products (e.g. in each of the cases from Example

3.6), we have

Dmot
FEt'(E) '

∨
n≥0

Dmot
n (E).

Indeed
∐
n≥0 FEt',n → FEt' is an LΣ-local equivalence (see Corollary B.5) and M factors through

LΣ-local equivalences by Example 2.12.
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5.3.2. Changing C. Often, we consider two functors C and D out of Span(SmS , all, fét) and a transfor-
mation C ⇒ D between them. For example C = SH and D = DM and the transformation given by
associating to a motivic spectrum its motive, i.e., the free HZ-module on it. Other examples include the
localization functor with respect to some topology such Lét : SH → SHét.

Proposition 5.14. Suppose given η : C⊗ → D⊗ ∈ Fun(Span(SmS , all, fét), Ĉat∞).

(1) There is a canonical natural transformation

exNη : η̄ ◦NC ⇒ ND ◦ (−, ηS) : P(SmS)/FEt' × C(S)→ P(SmS)//D.

(2) If the assumptions of Proposition 3.3 (for exMη to be an isomorphism) are satisfied, then there
is an induced natural transformation

exDmotη : ηSD
mot
gen ⇒ Dmot

gen (−, ηs) : P(SmS)/FEt' × C(S)→ D(S).

(3) Under the assumptions of (2), the transformation exDmotη is an isomorphism.

Proof. (1) All steps of Construction 5.3 are natural in C, whence we obtain the desired transformation.
(2) By Proposition 3.3 and (1) we have a span of natural transformations

ηSD
mot
gen = ηSM

CNC
exMη⇐=== MDη̄NC

exNη
===⇒MDND ◦ (−, ηS) = Dmot

gen ◦ (−, ηS)

and the first one is a natural isomorphism. This constructs exDmotη.
(3) Since η commutes with p⊗, f

∗ and ηS preserves colimits, this follows from Example 5.8. �

Example 5.15. In each of the cases from Example 3.6, the functor ηS commutes with the functor Dmot
gen .

Example 5.16. Let rC : SH(C) → SH denote the Betti realisation. Then rCD
mot
G (E) ' DG(rCE).

Indeed since rC factors through Lét : SH(C) → SHét(C), by Proposition 5.14 it suffices to deal with

E ∈ SHét(C). But then BG→ LétBG ' BétG is an étale-local weak equivalence, so

Dmot
G (E) = Dmot

BétG
(E) ' Dmot

BG (E) ' Dnaive
G (E),

by Corollary 2.11 and Example 2.5. Since rC is symmetric monoidal and preserves colimits, it commutes
with Dnaive

G as needed. The same argument applies to rC : Spc(C)∗ → Spc and rC : Spc(C)→ Spc.

5.3.3. Changing S. We begin to address the interaction of motivic colimits with base change.

Proposition 5.17. Suppose given C⊗ : Span(SchS , all, fét)→ Ĉat∞ and f : T → S ∈ SchS.

(1) There is a canonical natural isomorphism

ex∗N : NT ◦ (f∗, f∗)⇒ f∗NS ∈ Fun(P(SmS)/FEt' × C(S),P(SmT )//CT ).

(2) If the restriction of C to Schop
S satisfies the assumptions of Proposition 3.9(1), then there is an

induced natural transformation ex∗Dmot : Dmot
gen ◦ (f∗, f∗)⇒ f∗Dmot

gen .

(3) If the restriction of C to Schop
S satisfies the assumptions of Proposition 3.9(2), then ex∗Dmot is an

isomorphism.

Proof. (1) By taking a cocontinuous extension, it suffices to construct the transformation of functors
(SmS)/FEt × C(S)→ (SmT )//C . It can be informally described as

((X, p ∈ FEtX), E ∈ C(S)) 7→ ((p×S T )⊗(E|X×ST )
'−→ f∗p⊗(E|X)).

In particular the resulting transformation is a natural isomorphism, as claimed. To do this, we may as
well construct the transformation of functors on the larger categories (SchS)/FEt × C(S) → (SchT )//C .
The functor f∗ : (SchS)//C → (SchT )//C has a left adjoint f] (see Construction 3.7). It is thus enough to
construct

f]N
T
0 f
∗ ⇒ N0

S : (SchS)/FEt × C(S)→ (SchS)//C ,

or equivalently by adjunction a transformation of functors

C(S) ' Funcart
Span(SchS ,fét,all)(RS , (SchS)//C)→ Fun((SchS)//FEt' , (SchS)//C).

The target functor is just N†0 , i.e. restriction along SchS → Span(SchS , fét, all) followed by the nat-
ural inclusion. Unwinding the definitions, the source functor is obtained by first restricting along
Span(SchT , fét, all) → Span(SchS , fét, all), then restricting along SchT → Span(SchT , fét, all), postcom-
posing with f] : (SchT )//C → (SchS)//C and precomposing with f∗ : (SchS)//FEt' → (SchT )//FEt' . We
may symbolically depict this as

Funcart
Span(SchS ,fét,all)(RS , (SchS)//C) 3 F 7→ f] ◦ F |SchT ◦ f∗.
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As can be verified on the level of simplicial sets, this is the same as

F 7→ F ◦ f] ◦ f∗.
Thus the desired transformation is obtained by composition with the unit transformation of

f] : (SchT )//FEt' � (SchS)//FEt' : f∗.

(2, 3) We have the composite of natural transformations

Dmot
gen ◦ (f∗, f∗) 'MTNT ◦ (f∗, f∗)

MT ex
∗
N=====⇒MT f

∗NS
ex∗MNS====⇒ f∗MSNS ' f∗Dmot

gen ,

where the first one is obtained by (1) and is an isomorphism, and the second one is obtained by Proposition
3.9(1). We have thus obtained ex∗Dmot . It is an isomorphism as soon as ex∗M is, which is ensured by
Proposition 3.9(2). �

Example 5.18. In each of the cases from Example 3.6, Dmot
gen commutes with arbitrary base change in the

sense that f∗Dmot
gen (X , E) ' Dmot

gen (f∗X , f∗E) for any f,X , E.

Suppose that we have a morphism f : T → S. The equivalence f∗Dmot
n (E) ' Dmot

gen (f∗BétΣn, f
∗E)

from Example 5.18, and the comparison map of presheaves

f∗BétΣn|SmS
→ BétΣn|SmT

defines a comparison morphism

(5.19) f∗Dmot
n (E)→ Dmot

n (f∗E).

It is not clear that this is an equivalence, because formation of BétΣn need not commute with f∗ in
general. Using Example 2.13 we see that this problem goes away as soon as f∗BétΣn → BétΣn is a local
equivalence in an appropriate topology.

Remark 5.20. If f : T → S is smooth, then the map α : f∗BétG → Bétf
∗G ∈ P(SmT ) from Corollary

B.10 is a plain equivalence (as in established in the proof of that result). In particular Dmot
n etc. commute

with smooth base change as soon as Proposition 3.9 applies.

Example 5.21. Suppose that C is a sheaf in the Zariski topology. Then Corollary B.10, Example 2.13
and Proposition 5.17 imply that Dmot

n , Dmot
G and Dmot

FEt' commute with base change.

Example 5.22. Example 5.21 applies in particular to each of the cases from Example 3.6.

5.4. Example: the case of étale sheaves. In this subsection we return to the setting of Section 2.4.
In other words we put C⊗(X) = P(SmX). For p : X → Y finite étale, the norm p⊗ : P(SmX)→ P(SmY )
is just given by p∗. In particular, both norm and pullback preserve arbitrary colimits. We now compute
Dmot
G (X ) for X ∈ P(SmS), and G → Σn some finite group. Since Dmot preserves arbitrary colimits in

our situation (by Proposition 5.11), this reduces to the case where X is representable. Since representable
presheaves are in fact étale sheaves, the following result essentially achieves what we want.

Proposition 5.23. Let X ∈ P(SmS) be an étale sheaf and G → Σn a finite group. Then there is a
canonical equivalence

Dmot
G (X ) ' (Xn)ét

hG.

Proof. By the right hand side we mean the following: we take the presheaf Xn ∈ P(SmS) which comes
equipped with the G act on it. Then we take homotopy orbits, and take associated étale sheaf; this
models homotopy orbits internal to an appropriate ∞-topos. Let U ∈ SmS . We shall compute the
sections over U of both the left and the right hand side and show that they are equivalent, naturally in
U .

For the left hand side, we use Corollary 2.15 to obtain

Dmot
G (X )(U) ' colim

p̃∈BétG(U)
NX (p)(U)

' colim
p̃

(p⊗XE)(U)

' colim
p̃

(p∗XE)(U)

' colim
p̃

Map(E,X ).

Here we let p : E → U be the associated finite étale scheme of rank n to the principal G-bundle p̃.
For the right hand side, we work in the ∞-topos LétP(SmS) of étale sheaves on SmS . Let Xn // G ∈

LétP(SmS) denote the homotopy orbits computed in this topos. By the construction of a quotient stack
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(see [Sta, Tag 0370] for the 1-truncated case, and [NSS15, Section 3.2] for a discussion on the formation
of quotients) we have

Map(U,Xn // G) ' colim
p̃:Ẽ→U∈BétG(U)

MapG(Ẽ,Xn).

After an identification between the indexing diagrams of the two colimits using Lemma 5.5, it thus

remains to construct a natural equivalence MapG(Ẽ,Xn)
α∗−−→ Map(E,X ). We do this as follows. Let n

denote the set {1, . . . , n} with its canonical G-action. The map α : Xn × n → X , ((x1, . . . , xn), i) 7→ xi
is Σn-equivariant (for Σn acting trivially on the right hand side), and hence G-equivariant. Given

β ∈ MapG(Ẽ,Xn), we have α∗(β) := α ◦ (β × n) ∈ MapG(Ẽ × n,X ) ' Map(Ẽ ×G n,X ). Noting that

E = Ẽ×Gn, α∗ has the correct shape. Clearly α∗ is natural. In order to prove that α∗ is an equivalence,
we use that both sides are (étale) sheaves as functors of U (since X is), and hence we may assume that

Ẽ is split. In this case, the map is MapG(U ′ ×G,Xn)→ Map(U ′ × n,X ), which is an equivalence. �

5.5. Further properties. We now expand on more subtle properties of the motivic extended and
generalized power constructions, with applications to power operations in mind.

5.5.1. Iterated extended powers. A key property useful in the computation with power operations are
the so-called Adem relations. They are analogous to the Adem relations in the more familiar Steenrod
algebra. The Adem relations, as explained in the context of spaces by Dyer–Lashof [DL62, Section
1], come from studying the relationship between iterated extended powers and generalized powers for
wreath products of various groups. We provide the motivic analogs in this subsection. More precisely,
we compute expressions like Dmot

n Dmot
m (E) in terms of generalized powers for wreath products of groups.

Let us briefly recall how wreath products work. In general, if G is a group acting on {1, 2, . . . , n} (in
other words we are provided with a homomorphism G → Σn) and H is any group, then we denote by
H oG the semidirect product Hn oG. In particular we have a split exact sequence of groups

(5.24) 1→ Hn → H oG→ G→ 1.

If H acts on {1, . . . ,m}, then H oG acts on {1, . . . , n} × {1, . . . ,m}.
To make sense of the next lemma, recall that essentially by definition BétG ∈ P(SmS) is the restriction

of the quotient stack [∗/G] to SmS ; in other words, BétG classifies principal G-bundles on smooth S-
schemes. A homomorphism f : G → Σn induces BétG → BétΣn → FEt'. Thus, for each principal
G-bundle, we obtain an underlying finite étale scheme of rank n (depending on f) via Lemma 5.5. Let
us also recall that if we have an exact sequence of groups 1 → K → G → H → 1, then we have a fiber
sequence in P(SmS):

(5.25) BétK → BétG→ BétH,

obtained by pullback of the map classifying the trivial H-bundle S → BétH along BétG→ BétH.

Lemma 5.26. Let G be a finite group acting on {1, 2, . . . , n} and H any finite group. Let f : X → S ∈
SmS and p̃ : X → BétG classify a principal G-bundle with underlying finite étale scheme p : F → X.
Then there is a canonical cartesian square

(5.27)

LZarf]p∗p
∗BétH −−−−→ BétH oG

γ

y y
X

p̃−−−−→ BétG.

Proof. Let us first prove the equivalent result in P(SchS). Working directly from the definitions, the
fiber F = X ×[∗/G] [∗/(H o G)] is the presheaf over X taking T ∈ SchX to the groupoid of H-torsors

on FT . This is exactly f b] p∗p
∗BétH, where the superscript b reminds us that we are working in the big

topos.
To prove the actual result, since we are working Zariski locally, we may assume that S and X are

affine and work in P(SmAffS). It will be enough to prove that f]p∗p
∗BétH ' (f b] p∗p

∗[∗/H])|SmAffS .
This is true when evaluating on T ∈ SmAffX . Since the left hand side is a colimit of such T ’s, it suffices
to prove that the right hand side also is. In other words it suffices to show that p∗[∗/H] ∈ P(AffX) is
a colimit of smooth affine schemes, or equivalently is left Kan extended from SmAffX . Via [EHK+20,
Proposition A.0.4] this follows from the fact that [∗/H] is a smooth stack with quasi-affine diagonal and
that the Weil restriction p∗ preserves such stacks; see the proof of Lemma B.1 for more details. �
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The next proposition is our main resulting concerning iterated extended powers. For the rest of this
section, we fix a functor

C⊗ : Span(SmS , all, fét)→ Ĉat∞,

satisfying the following properties:

• Each category C(X) is stable and admits small colimits.
• C satisfies smooth base change.
• C⊗ satisfies the distributivity law of [BH20, Proposition 5.12].
• Each functor f⊗ preserves sifted colimits.

Under these assumptions, Propositions 3.9 and 3.14 apply.

Proposition 5.28. Let G→ Σn and H → Σm be group homomorphisms, with G,H finite. Let H oG→
Σnm correspond to the canonical action of H oG on {1, . . . , n}× {1, . . . ,m}. Suppose further that C is a
Zariski sheaf. Then there is a canonical equivalence of functors Dmot

G ◦Dmot
H ' Dmot

HoG.

Proof. Let E ∈ C(S). Consider the diagram N : BétH o G → C with M(N) = Dmot
HoG(E). Let q :

BétH oG→ BétG be the canonical map. For f : X → S ∈ SmS and p̃ : X → BétG we have an induced
diagram Np̃ : q−1({p̃}) → BétH oG → C. By Lemma 5.26, we have q−1({p̃}) ' LZarf]p∗p

∗BétH, where
p : F → X is the finite étale scheme (of rank n) corresponding to p̃ : X → BétG. In other words

(5.29) Np̃ = LZarf]p⊗N
0
p ,

where N0
p ∈ P(SmF )/CT is the diagram computing Dmot

H (EF ). In particular

(5.30) N ' colim
F
p̃−→X

f−→S

LZarf]p⊗N
0
p .

Let N ′p → N0
p be the universal approximation of Np by smooth quasi-projective schemes, i.e., the left

Kan extension of its restriction to smooth quasi-projective schemes. Since Np is a sheaf, it preserves finite
products, whence so does N ′p; i.e. N ′p is a sifted colimit of smooth quasi-projective schemes. Moreover
N ′p → Np is an equivalence on smooth quasi-projective schemes, so in particular a Zariski equivalence.
Since C is a Zariski sheaf, by Example 2.13 (M preserves Zariski equivalences) and Proposition 3.14
(compatibility of M with p⊗) we get

MX(p⊗N
0
p ) 'MX(p⊗N

′
p) ' p⊗MF (N ′p) ' p⊗MF (N0

p ) ' p⊗Dmot
H (EF ).

With the hypotheses on C, we can use Example 2.13 (M preserves Zariski equivalences), Proposition
3.11 (compatibility of M with f]) and Remark 5.20 (compatibility of Dmot

H with smooth base change),
to obtain equivalences:

(5.31) MS(LZarf]p⊗N
0
p ) ' f]p⊗Dmot

H (EF ) ' f]p⊗(Dmot
H (E)F ).

The claim then follows by the following computation:

Dmot
G (Dmot

H (E))
E.5.8' colim

F
p̃−→X

f−→S

f]p⊗(Dmot
H (E)F )

(5.31)
' colimMS(LZarf]p⊗N

0
p )

(5.29)
' colimMS(Np̃)

'MS(colimNp̃)

(5.30)
' MS(N)

' Dmot
HoG(E).

�

5.5.2. Excisivity results. With the assumptions on C from the previous section still in play, we discuss
some excisivity properties of the extended powers. Recall that a functor f : D → E is called n-excisive
if it sends strongly cocartesian (n+ 1)-cubes to cartesian (n+ 1)-cubes [Lur17a, Definition 6.1.1.3].

Lemma 5.32. Let f : X → Y ∈ SmS be finite étale of degree ≤ n. Then f⊗ : C(X) → C(Y ) is
polynomial of degree ≤ n, and so n-excisive.

Proof. This is the same argument as [BH20, Proposition 5.25]. For the n-excisivity, see [BH20, Remark
5.22]. �

Corollary 5.33. Let X ∈ P(SmS)/BétΣn . Then Dmot
X : C(S)→ C(S) is n-excisive.
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Proof. In a stable category any colimit of n-excisive functors is n-excisive [Lur17a, Remark 6.1.5.10].
From the colimit formula for Dmot

X in Example 5.8, it thus remains to show that f]g⊗p
∗ is n-excisive, for

g finite étale of degree n. This follows from Lemma 5.32, since f], p
∗ are exact.

�

We also have the following observation. Recall that a functor is called reduced if it preserves the
terminal object.

Lemma 5.34. Let f : X → Y ∈ SmS be finite surjective étale. Then f⊗ is reduced.

Proof. For f : X → Y finite étale, let g : Z → Y be the inclusion of the complement of the image of f .
Then the distributivity law implies that f⊗(0) ' g](1), which is zero as soon as Z = ∅. �

Corollary 5.35. Let X ∈ P(SmS)/BétΣn , n ≥ 1. Then Dmot
X : C(S)→ C(S) is reduced.

Proof. Any colimit of functors preserving the 0-object preserves the 0-object, so it suffices to show that
f]g⊗p

∗ preserves the 0-object, where g is finite étale of degree n. Since f] and p∗ are exact they preserve
the 0-object, and for g⊗ this follows from Lemma 5.34, using that n ≥ 1. �

Finally we can compute the cross effect, in the case n = 2. We thank Markus Spitzweck for pointing
out the following elegant proof.

Proposition 5.36. Let Dmot
2 : C(S)→ C(S) denote the motivic extended square. Then Dmot

2 (E ∨ F ) '
Dmot

2 (E) ∨Dmot
2 (F ) ∨ E ∧ F .

Proof. The free normed spectrum functor

NSym : C(S)→ NAlg(C(S))→ C(S)

satisfies NSym(E ∨ F ) ' F (E) ∧ F (F ), and also [Bac21, Proposition C.7(4)]

NSym(E) '
∨
n≥0

Dmot
n (E).

The claim can be read off from this. �

5.5.3. Thom isomorphisms. If A ∈ NAlg(SH(S)), then there is a functor

ModA(SH)⊗ : Span(SmS , all, fét)→ Ĉat∞,

promoting the symmetric monoidal ∞-category ModA(SH(S)) to a normed ∞-category [BH20, Propo-
sition 7.6.4]. This comes equipped with a transformation SH⊗ ⇒ ModA(SH)⊗, given in components
by −⊗A. We denote the motivic extended powers for the functor C⊗ =ModA(SH)⊗ by

DA
n :ModA(SH(S))→ModA(SH(S)).

Proposition 5.37. Let A ∈ NAlg(SH(S))MGL/ and E ∈ ModA(SH(S)). Then there is a canonical

equivalence DA
n (Σ2,1E) ' Σ2n,nDA

n (E).

Proof. Put T = Σ2,1
1. The claim follows from the following computation, carried out in the stable

∞-category ModA(SH(S)):

DA
n (E ⊗ T )

E.5.8' colim
X
f→S,U p→X

f]p⊗p
∗(E ⊗ T )

(2)
' colim f](p⊗p

∗E ⊗ p⊗p∗T )

(3)
' colim f](p⊗p

∗E ⊗ Σp∗OU1)

(4)
' colim f](p⊗p

∗E ⊗ Σ2n,n
1)

(5)
' colim f](p⊗p

∗E)⊗ Σ2n,n
1

' T⊗n ⊗ colim f](p⊗p
∗E)

E.5.8' T⊗n ⊗DA
n (E).

Here, the second equivalence follows from symmetric monoidality of p⊗, the third equivalence follows
from the value of p⊗ on spheres [BH20, Lemma 4.4], the fourth equivalence follows from the coherent
orientation on A and the fifth follows from the projection formula. �
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5.5.4. Extended powers and transfers.

Lemma 5.38. Let H ⊂ G be an inclusion of finite groups, with n = |G : H|. Then BétH → BétG is a
relative finite étale morphism of degree n.

Proof. A morphism of sheaves being finite étale is fpqc local on the target [Sta, Tags 0245 and 02LA,
02VN]. It hence suffices to check that the pullback of BétH → BétG along ∗ → BétG (classifying the
trivial torsor) is finite étale of degree n; this is clear since the pullback is G/H. �

Proposition 5.39. Let H ⊂ G be an inclusion of finite groups, with d = |G : H|. Suppose given an
action of G on {1, . . . , n} and E ∈ SH(S). Then there is a canonical transfer Dmot

G (E)→ Dmot
H (E).

Let Z ∈ SH(S). If for each X ∈ SmS, p : Y → X finite étale of degree d and F ∈ SH(X) the

composite Z ∧ F trp−−→ Z ∧ p]p∗F → Z ∧ F is an equivalence, then so is the composite Z ∧ Dmot
G (E) →

Z ∧Dmot
H (E)→ Z ∧Dmot

G (E).

Proof. This is an immediate consequence of the definition of extended powers as motivic colimits, Lemma
5.38 and Corollary 4.8. �

Example 5.40. If Z = HZ/p and d is coprime to p, the second part of the above proposition applies.

6. The equivariant model

To proceed further in our study of power operations, we will use equivariant motivic homotopy the-
ory as a computational tool. In this section, we introduce an enhancement of the n-fold smash powers
construction which lands in genuine Σn-motivic spaces/spectra. We will then relate this to the extended
power construction. In Appendix C, we review the necessary technology from equivariant motivic ho-
motopy theory needed to perform the constructions below.

6.1. Enhanced smash powers. The enhanced smash power functor is of the form

(6.1) (−)∧n : SH(S)→ SHΣn(S).

The composite with the forgetful functor agrees with the n-fold smash product functor:

(6.2)

SH(S) SHΣn(S)

SH(S).

(−)∧n

(−)∧n
forget

From this and the motivic homotopy orbits construction we obtain a functor

X 7→ EΣn+ ∧Σn X
∧n = X

∧n
hΣn

,

which we’ll see agrees with the motivic extended powers; see the discussions in Section 6.3.
The origin of the enhanced smash power functor is the unstable enhanced smash power

(6.3) (−)∧n : Spc(S)∗ → SpcΣn(S)∗,

which is an enhancement of the endofunctor X 7→ X∧n or the functor given by p⊗p
∗ where p is the fold

map p :
∐
n S → S:

(6.4)

Spc(S)∗ SpcΣn(S)∗

Spc(S)∗.

(−)∧n

p⊗p
∗ forget

As hinted in the diagrams (6.2) and (6.4), there is an intimate relationship between the smash power
functors and the norm functors p⊗ of the first author and Hoyois constructed in [BH20, Section 3]. In
fact, the enhanced smash powers are simply norms along certain finite étale morphisms of stacks.

Recall that if p : X → Y is a finite étale morphism of stacks, then there are symmetric monoidal norm
functors

p⊗ : Spc(X )→ Spc(Y),

and similarly for Spc(−)∗ and SH(−), provided that the latter is defined [Bac21, Sections 2.2 and 2.3].
By definition, for X ∈ SmX we have p⊗(X) = Rp(X), where Rp denotes Weil restriction.

Now let S be a scheme and consider the Σn-scheme n = S
∐
n over S. Then p : [n/Σn]→ [S/Σn] is a

finite étale morphism.
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Definition 6.5. We put
(−)∧n = p⊗p

∗triv : Spc(S)∗ → SpcΣn(S)∗,

and similarly for SH(−),Spc(−).

In particular on the level of schemes, X×n = Xn with the Σn-action given by permuting the factors.

6.2. Diagonals. While we do not need it in this article, we record for future reference that enhanced
smash powers of pointed spaces admit diagonals, which we construct as follows. We have the functors

triv, (−)∧n : SmS+ → SmΣn
S+, X+ 7→ X+, (X

×n)+

which on applying PΣ and using [BH20, Lemma 2.1] induce

triv, (−)∧n : PΣ(SmS)∗ → PΣ(SmΣn
S+)∗.

The maps ∆n : X+ 7→ (X×n)+ of schemes are Σn-invariant if X is given the trivial action and Xn the
permutation action. They are also natural in the pointed scheme X+. Hence they induce

∆n : triv⇒ (−)∧n : SmS+ → SmΣn
S+.

Definition 6.6. We denote by

∆n : triv⇒ (−)∧n : Spc(S)∗ → SpcΣn(S)∗

the induced transformation.

6.3. Motivic extended powers via enhanced smash powers. We will now construct the motivic
extended powers via enhanced smash powers. For a group G, we have EG ∈ SpcG(S)[Ftriv] as in
Definition C.3. Recall the motivic homotopy orbits functor

(−)hG : SHG(S)
∧EG+−−−−→ SHG(S)[Ftriv]

(−)/G−−−−→ SHG(S)

from Section C.4.

Definition 6.7. We denote by Dn the functor

Dn : SH(S)
(−)∧n−−−−→ SHΣn(S)

(−)hΣn−−−−−→ SH(S).

If H ⊂ Σn is a subgroup, then we denote by DH the functor

DH : SH(S)
(−)∧n−−−−→ SHΣn(S)→ SHH(S)

(−)hH−−−−→ SH(S).

Our next goal is to prove a canonical equivalence of endofunctors Dmot
n ' Dn. To do so, recall that we

have the presheaf BétΣn of principal Σn-bundles. Given a principal Σn-bundle T → X, we can form the
quotient T ×Σn {1, . . . , n} (in the étale topology); this is a finite étale scheme over X of rank n. In this
way we obtain a morphism of presheaves BétΣn → FEt',n elaborating the equivalence already stated in
Lemma 5.5.

Proposition 6.8. Let p : T → S be a finite étale morphism of degree n, and q : R → S the associated
Σn-torsor. Then the we have an equivalence

p⊗p
∗ ' R+ ∧Σn (−)∧n : SH(S)→ SH(S),

naturally in p.

Proof. The right hand functor can alternatively be written as

SH(S)
(−)∧n−−−−→ SH([S/Σn])

[q/Σn]∗−−−−−→ SH([R/Σn]) ' SH(S).

In particular it is symmetric monoidal and preserves sifted colimits. By the universal property of SH(S)
[BH20, Lemma 4.1], it suffices to exhibit a symmetric monoidal equivalence of the two functors after
composing with SmQPS+ → SH(S). This reduces to exhibiting for X+ ∈ SmQPS+ a natural equivalence

XT
+ ' (R×Σn X

n)+.

Both sides being étale sheaves, we may assume that T = S
∐
n whence R = S × Σn, in which case the

claim is clear. �

Remark 6.9. It follows that under the equivalence BétΣn ' FEt',n the functors

(SmS)//FEt',n × SH(S)→ SH(S), ((T
p−→ X), E) 7→ (X → S)]p⊗ET

can be equivalently described as

(SmS)//BétΣn × SH(S)→ SH(S), ((R→ X), E) 7→ (X → S)]R+ ∧Σn E
∧n
X .
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Lemma 6.10. There is a canonical equivalence EG ' colimR∈BétGR ∈ ShvNis(SmG
S ).

Proof. For this proof we put SmG
S = Smqproj

S//G and SmS = Smqproj
S (see the discussion in Section C.1). By

this convention, whenever X ∈ SmG
S carries a free G-action, then the quotient exists and lies in SmS .

This implies that the category of elements (SmS)//BétG is equivalent to SmG
S [Ftriv]. It follows that

EG ' colim
R→EG

R ' colim
R∈SmG

S [Ftriv]
R ' colim

R∈BétG
R,

where the colimits are computed in P(SmG
S ). The desired result about sheaves follows immediately.2 �

Corollary 6.11. The two functors Dmot
H ,DH : SH(S)→ SH(S) are canonically equivalent.

Proof. By definition, Dmot
H (−) is given by the colimit over BétH → BétΣn ' FEt',n of the first diagram

of Remark 6.9. It thus remains to show that the colimit over BétH of the second diagram is DH(−).
This is true since

colim
R∈BétH

[(R×H Σn)+ ∧ (−)∧n] ' ( colim
R∈BétH

R)+ ∧H (−)∧n ' EH+ ∧H (−)∧n ' DH(−),

where in the middle we have used Lemma 6.10 (and we have also used that (−)/H and (−)∧E preserve
colimits). �

6.4. Monoidality of motivic extended powers. We illustrate the convenience of the equivariant
model by establishing further properties of Dmot

n . While it would be possible to do so in the motivic
colimit model, this seems to require much more effort.

Proposition 6.12. The functor Dmot
n : SH(S)→ SH(S) is canonically op-lax symmetric monoidal.

Proof. Since Dmot
n ' Dn by Corollary 6.11, and the functor Dn is a composite of oplax symmetric

monoidal functors (see Proposition C.5(3)), the result follows. �

Definition 6.13. Let A,B ∈ C(S). We denote by βA,B = βnA,B : Dmot
n (A ∧ B) → Dmot

n (A) ∧Dmot
n (B)

the natural transformation witnessing op-lax monoidality of Dmot
n , as established in Proposition 6.12.

Consider the map α : ∗ → FEt',n corresponding to S
∐
n ∈ FEt',nS . This induces a natural transfor-

mation αA = αnA : A∧n ' Dmot
α (A)→ Dmot

n (A).

Remark 6.14. By construction, αA is natural in A: if f : A → B ∈ C(S), then the following square
commutes

A∧n
αA−−−−→ Dmot

n (A)

f∧n
y Dmot

n (f)

y
B∧n

αA−−−−→ Dmot
n (B).

The following result will eventually be used to establish the Cartan formula for motivic power opera-
tions.

Theorem 6.15 (Ur-Cartan relation.). Let E ∈ SH(S). The composite

Dmot
2 (E ∧ E)

βE,E−−−→ Dmot
2 (E) ∧Dmot

2 (E)
αDmot

2 (E)

−−−−−−→ Dmot
2 (Dmot

2 (E))

is homotopic to Dmot
2 (αE).

Proof. Denote by W ⊂ Σ4 the wreath product Σ2oΣ2. W has a unique normal subgroup H of order 2, and
a unique normal non-cyclic subgroup H ⊂ K ⊂ W . (H is generated by (13)(24) and K by (13), (24).)

We claim that (1) Dmot
2 (Dmot

2 (E)) ' E
∧4
hW (see also Proposition 5.28). We claim that similarly (2)

Dmot
2 (E ∧ E) ' E

∧4
hH and (3) Dmot

2 (E) ∧ Dmot
2 (E) ' E

∧4
hK . We finally claim that (4) commutative

diagram in SHΣ4(S)

E∧4 ∧ Σ4/H+ E∧4 ∧ Σ4/W+

E∧4 ∧ Σ4/K+

2The only reason this lemma is stated in terms of sheaves is that otherwise we are not free to choose the definition of

SmG
S .
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turns upon applying (−)hΣ4
into the commutative diagram

Dmot
2 (E ∧ E) Dmot

2 (Dmot
2 (E))

Dmot
2 (E) ∧Dmot

2 (E)

Dmot
2 (αE)

βE,E αDmot
2 (E)

that we were after.
To prove the claims, note that the composite

F : SHΣ2(S)[Ftriv]
(−)/Σ2−−−−−→ SH(S)

(−)∧2

−−−−→ SHΣ2(S)

is a Spc(S)∗-module functor, provided we act by triv on SHΣ2(S)[Ftriv] and by the norm on SHΣ2(S).
It is consequently obtained via universal properties from

SmΣ2

S+[Ftriv]→ SmΣ2

S+, X 7→ (X/Σ2)
×2
+ .

Now observe that (X/Σ2)×2 ' X×2/K. Tracing through the universal properties again, we see that F
is homotopic to the composite

F ′ : SHΣ2(S)[Ftriv]
(−)∧2

−−−−→ SHW (S)[FKtriv]
(−)/K−−−−→ SHW/K(S) ' SHΣ2(S).

From F ' F ′ we deduce that

Dmot
2 (E)∧2 ' E∧4

hK ,

with the inherited action by Σ2 'W/K. This implies claims (1) and (3). Claim (2) is proved similarly,
and claim (4) now follows directly from the definitions. �

Appendix A. Small and large presheaves

In this appendix, by category we shall always mean ∞-category.

A.1. Presheaves on large categories. For universes U ⊂ V we call a (U,V)-category a category C
with Ob(C) ∈ V and MapC(c, d) ∈ U for all c, d ∈ C. We fix universes U ∈ V ∈ W. We call a (U,U)-
category a small category and a (U,V)-category a locally small category. By a large category we mean
any category that is not locally small, for example a (V,V)-category. Note that Cat (the category of

small categories) is a locally small category, and Ĉat (the category of locally small categories) is a large
category, more precisely a (V,W)-category.

If C is a locally small category, there are various possible categories of presheaves on C. First, we

denote by Ŝpc the large category (more precisely a (V,W)-category) of V-small spaces. We define:

(1) The ∞-category of presheaves of spaces as P1(C) = Fun(Cop,Spc).

(2) The ∞-category of presheaves valued in Ŝpc, i.e., those that take values in V-small spaces as

P̂(C) = Fun(Cop, Ŝpc).
(3) In P1(C) we denote by P0(C) the full subcategory generated under U-small colimits by C.
(4) In P̂(C) we denote by P̂0(C) the full subcategory generated under U-small colimits by C.

Lemma A.1. Let C be a locally small category.

(1) The canonical functor P1(C) → P̂(C) is fully faithful and preserves U-small colimits. The re-

stricted functor P0(C)→ P̂0(C) is an equivalence.

(2) Let D be any (possibly large)∞-category with U-small colimits. Let FunU(P̂0(C),D) ⊂ Fun(P̂0(C),D)
denote the full subcategory on those functors preserving U-small colimits. Then composition with

the Yoneda embedding induces an equivalence FunU(P̂0(C),D)→ Fun(C,D).
(3) Every object in P0(C) can be written as a U-small colimit of representable presheaves.
(4) The category P0(C) is locally small.

Proof. (1) The first claim follows from the fact that Spc → Ŝpc is fully faithful and preserves U-small
colimits. The second claim is an immediate consequence of the definitions.

(2) This follows from [Lur17b, Proposition 5.3.6.2 and its proof].
(3) Let P ⊂ P0(C) be the full subcategory on U-small colimits of representables. It suffices to show

that P is closed under U-small colimits. Let F : I → P be a U-small diagram. For each i ∈ I choose
a U-small diagram Gi : Ji → C ⊂ P0(C) with colimGi ' F (i). Let C′ be the full subcategory of C
on
⋃
iGiOb(Ji); this is a U-small category. The functor C′ → C induces a colimit preserving functor

e : P1(C′)→ P1(C), which is fully faithful by (1). By construction F factors through the essential image
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P ′ of e and hence colimI F ∈ P ′. It remains to show that P ′ ⊂ P. But every object in P1(C′) = P(C′)
is a U-small colimit of objects in the Yoneda image of C′, so this is clear.

(4) P1(C) is a (V,V)-category. It hence suffices to show that the mapping spaces in P0(C) are U-small.
This follows from (3). �

Definition A.2. If C is a locally small category, we denote by P(C) the equivalent locally small categories

P0(C) ' P̂0(C).

We can strengthen Lemma A.1(2) somewhat. Let G : D → E be a functor and i : C ↪→ E a full
subcategory. We call a functor F : C → D a partial left adjoint to G if there exists a transformation
u : i → GF such that for all c ∈ C and d ∈ D the induced map MapD(Fc, d) → MapE(GFc,Gd) →
MapE(c,Gd) is an equivalence.

Lemma A.3. Let C be locally small and D an ∞-category with U-small colimits and V-small mapping

spaces. Suppose f : C → D is any functor. Then the functor f∗ : D → P̂(C) has as a partial left adjoint
given by the U-cocontinuous extension f : P(C)→ D.

Proof. Let j : D → D′ be a functor such that (1) j is fully faithful, (2) j preserves U-small colimits,
and (3) D′ has V-small colimits. This exists by [Lur17b, Proposition 5.3.6.2]. Applying the universal

property of C → P̂(C) to the composite jf , we obtain a V-cocontinuous extension f̄ : P̂(C) → D′. The

composite P(C)→ P̂(C) f̄−→ D′ preserves U-small colimits and hence, by the universal property of P(C),
is determined by its restriction along C → P(C). Thus the following diagram commutes

P(C) f−−−−→ D

i

y j

y
P̂(C) f̄−−−−→ D′.

Fully faithfulness of j now implies that f∗ ' f̄∗j. The unit transform ū of the adjunction f̄ a f̄∗ provides
u : i ⇒ f̄∗f̄ i ' f̄∗jf ' f∗f . Fully faithfulness of i and j finally imply that u exhibits f as partial left
adjoint to f∗. �

A.2. Presheaves and slices. Recall that if F : C → D is a functor (with D possibly large) and d ∈ D,

then C/d → C is a cartesian fibration classifying the functor Cop → Ŝpc, a 7→ Map(F (−), b). Note that
this category could a priori be as large as D.

Let C be a small category and denote by F : C → Fun(Cop, Ĉat∞) the composition of the Yoneda

embedding with the inclusion Spc → Ĉat∞. Suppose given a functor F : Cop → Ĉat∞. We denote by
C/F the slice category along F after identifying C with its Yoneda image. Note that objects of C/F can
be informally described as pairs (c,X) with c ∈ C and X : Fc→ F , i.e. X ∈ F(c).

Lemma A.4. (1) C/F → C is the cartesian fibration classifying the functor C → Ŝpc, c 7→ F(c)'.
(2) The large category C/F is locally small.

Proof. (1) As recalled above, C/F → C is the cartesian fibration classifying the functor c 7→ Map
Fun(Cop,Ĉat∞)

(Fc,F).

We have equivalences

Map
Fun(Cop,Ĉat∞)

(Fc,F) ' Map
Fun(Cop,Ŝpc∞)

(Fc,F')

' F(c)',

where the first equivalence is because taking maximal subgroupoid is right adjoint to the inclusion
Spc→ Cat∞ and the second equivalence is the Yoneda lemma.

(2) In other words, mapping spaces in C/F are small. Let (c,X), (d, Y ) ∈ C/F . There exists a fully
faithful subfunctor F ′ ⊂ F valued in small categories containing X and Y . Since MapCF ((c,X), (d, Y )) '
MapCF′ ((c,X), (d, Y )) (e.g. by (1)), we have reduced to F small, and the result is clear. �

Now consider the categories P(C/D) (see Definition A.2) and P̂(C). Note that D' naturally defines an

object of P̂(C), and that P(C) ⊂ P̂(C) is a full subcategory. We denote by P(C)/D the full subcategory

of P̂(C)/D' (ordinary slice category) on objects (P,E) with P ∈ P(C). Since P̂(C) has colimits so does

P̂(C)/D' ; consequently by Lemma A.1 the functor C/D → P̂(C)/D' induces a functor P(C/D)→ P̂(C)/D' .

Lemma A.5. The functor P(C/D) → P̂(C)/D' factors through P(C)/D ⊂ P̂(C)/D' and induces an
equivalence P(C/D) ' P(C)/D.
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Proof. The functor P(C/D) → P̂(C)/D' preserves colimits. Since colimits in section categories are
computed on the source [Lur17b, Corollary 5.1.2.3], the functor factors as claimed. It suffices to show
that P(C)/D is generated under small colimits by the completely compact objects C/D ⊂ P(C)/D. Let
c ∈ C, F ∈ P(C) and α : c→ D, β : F → D. We have MapP(C)/D (α, β) = F (c)×D(c)' {α}. Since colimits

in section categories are computed on the source and colimits in Spc are universal, this expression
preserves colimits in F . It follows that the objects C/D ⊂ P(C)/D are completely compact. Given
β : F → D ∈ P(C)/D, we have β ' colimγ∈C/F β ◦ γ (again since colimits are computed on the source),

so the objects C/D ⊂ P(C)/D generate. This concludes the proof. �

Appendix B. Some stacks left Kan extended from smooth affines

In this appendix, we slightly extend the growing literature on left Kan extensions of invariants from
smooth schemes. Let S be an affine scheme and X ∈ P(AffS). We call X left Kan extended from smooth
affines if the counit map e!e

∗X → X is an equivalence, where

e! : P(SmAffS) � P(AffS) : e∗.

Lemma B.1. Let G → S be a finite étale group scheme, X a finite étale G-scheme, and Y a smooth
S-scheme. Then the Weil restriction Q(G,X, Y ) of Y × [X/G] along [X/G]→ [∗/G] is left Kan extended
from smooth affines.

Proof. Put X := Q(G,X, Y ). By [EHK+20, Proposition A.0.4] it suffices to show that X is a smooth
algebraic stack with quasi-affine diagonal. For this it suffices to prove that (1) X → [∗/G] is smooth
with quasi-affine diagonal and (2) [∗/G] → ∗ is smooth with affine diagonal. Since [X/G] → [∗/G] is
finite étale, the Weil restriction X is étale locally on [∗/G] given by [∗/G] × Y n, which is smooth and
schematic, hence has quasi-affine diagonal; (1) follows since it is fppf local on [∗/G]. (2) is clear. �

Example B.2. Taking Y = X = ∗, we see that Q(G, ∗, ∗) = [∗/G] is left Kan extended from smooth
affines.

Example B.3. Taking G = Σn, X = n and Y arbitrary, [X/G] → [∗/G] is the universal finite étale
scheme of degree n and Q(Σn, n, Y ) is the stack of finite étale schemes with a morphism to Y (which is
thus left Kan extended from smooth affines if Y is smooth over S).

Lemma B.4. Let Xi be a sequence of stacks. Then

LΣ

P∐
i

Xi ' colim
i

Stk∐
i≤n

Xi,

where on the left hand side we take the coproduct in presheaves and on the right hand side we mean the
filtered colimit in presheaves, but the finite coproduct in stacks.

Proof. Since filtered colimits of spaces preserve finite products, the right hand side is a Σ-presheaf. It
follows that it suffices to show that LΣ

(
X1 qP X2

)
' X1qStk X2. A morphism T → X1qX2 is the same

as a disjoint union decomposition T ' T1 q T1 and morphisms Ti → Xi. This is exactly a section of
the sheafification of X1 qP X2 with respect to the topology of disjoint unions, i.e. LΣ [BH20, Lemma
2.4]. �

Denote by Q(FEt, Y ) the stack of finite étale schemes together with a morphism to some fixed scheme
Y .

Corollary B.5. For Y smooth over S we have

LΣ

∐
n≥0

Q(Σn, n, Y ) ' Q(FEt, Y ).

In particular

LΣ

∐
n≥0

BétΣn ' FEt'.

Proof. Immediate from Lemma B.4 and Example B.3, using that BétΣn is the stack of finite étale schemes
of degree n, and that the degree of a finite étale scheme is locally constant. �

Lemma B.6. The left Kan extension functor

e! : P(SmAffS)→ P(AffS)

preserves Σ-presheaves and LΣ-equivalences.
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Proof. The claim about LΣ-equivalences is clear. The preservation of Σ-presheaves follows from the facts
that for X,Y ∈ AffS we have (SmAffS)XqY/ ' (SmAffS)X/ × (SmAffS)X/, these categories are filtered,
and filtered colimits of spaces commute with finite products. �

Corollary B.7. Let Y ∈ SmS. Then Q(FEt, Y ) ∈ P(AffS) is left Kan extended from smooth affines.

Proof. Via Lemma B.6 and Corollary B.5 we are reduced to the stacks Q(Σn, n, Y ), which are treated
in Lemma B.1. �

We now treat the case where S is not necessarily affine.

Lemma B.8. Let S be a scheme and X ∈ P(SchS). Suppose X|AffB is left Kan extended from smooth
affines, for all B in some Zariski cover of S by affine schemes. Denote by

ẽ! : P(SmS) � P(SchS) : ẽ∗

the left Kan extension adjunction. Then the counit ẽ!ẽ
∗X → X is a Zariski equivalence.

Proof. This is a minor variation of [EHK+20, Lemma 3.3.9], with essentially the same proof. �

Lemma B.9. Let f : T → S be a morphism of schemes and X ∈ P(SchS) such that both X and X|SchT

are left Kan extended from their restrictions to smooth schemes up to LZar (e.g. satisfy the assumptions
of Lemma B.8). Then the canonical map

α : f∗(X|SmS
)→ X|SmT

∈ P(SmT )

is a Zariski equivalence.

Proof. Since in the adjunction
g! : P(SmT ) � P(SchT ) : g∗

the functor g! is fully faithful and both functors preserve Zariski equivalences, it suffices to prove that
g!(α) is an equivalence. Compatibility of left Kan extensions with composition and our assumptions
imply that both g!f

∗(X|SmS
) ' f∗g!(X|SmS

) and g!(X|SmT
) are Zariski equivalent to X|SchT , whence the

result. �

Corollary B.10. Let f : T → S be a morphism of schemes, and G a finite étale S-group scheme. There
is a canonical morphism f∗BétG→ Bétf

∗G ∈ P(SmT ), which is a Zariski-equivalence.

Proof. Combine Lemmas B.8, B.9 and Example B.2. �

Appendix C. Recollections on equivariant motivic homotopy theory

In this section, G is always a finite group, thought of as a finite discrete group scheme over S. We
review the construction and basic properties of G-equivariant motivic homotopy theory. Our main
reference is [Bac21], which builds on [GH] and [Hoy17].

C.1. Stacks and G-schemes. If S is a scheme with a G-action, we can form the stacky quotient
S // G = [S/G].3 If B is a base scheme with trivial G-action, then the functor

SchGB → Stk/B//G, X 7→ X // G

is fully faithful (where Stk denotes the (2, 1)-category of algebraic stacks). In this way the language of
stacks can replace the language of G-schemes, and this is indeed done in our main reference.

Let X be a stack. Denote by

Smaff
X ⊂ Smqaff

X ⊂ Smqproj
X ⊂ Smsch

X ⊂ Smrepr
X ⊂ Stk/X

the full subcategories on those stacks Y smooth over X such that whenever A is an affine scheme and
A → X is any morphism, then Y ×X A is respectively an affine scheme, a quasi-affine scheme, a quasi-
projective A-scheme, a scheme, or an algebraic space. Motivic homotopy theory of X will be built with
one of these categories as the starting point. Depending on the choice, one may obtain theories with
more or less favorable properties. At least if X = S // G (and X separated in case of Smaff

S ), then all
of these choices lead to the same theory [Bac21, Lemma A.4, Example A.9, Proposition A.13] [Hoy17,
Remark 3.3].

In the sequel, if X = S // G, we denote by SmX any of the above categories, noting that whatever
construction we are performing ultimately does not depend on the choice. If X is not of this form, one

should take SmX := Smqaff
X to be consistent with [Bac21]. As explained there [Bac21, Lemma A.4], the

3The notation S // G is more common in homotopy theory and used in [Bac21], whereas [S/G] is used in algebraic

geometry.
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resulting categories are the same ones as constructed in [Hoy17], for those stacks treated in the latter
reference.

C.2. Basic notions. Let S be a scheme with a G-action. Put SmG
S := SmS//G. Recall that a family of

subgroups F of G is a set of subgroups which is closed under conjugation and passage to subgroups.

Example C.1. The families that are of greatest interest in this paper are the extreme ones: the family
Fall of all subgroups of G, and the family Ftriv consisting of only the trivial subgroup {e}.

Write SmG
S [F ] = SmS//G[F ] for the subcategory on those schemes with isotropy in F [Bac21, Definition

3.6]. One puts

SpcG(S)[F ] = Spc(S // G)[F ] = LmotP(SmS//G[F ]).

The canonical functor

SpcG(S)[F ]→ SpcG(S)

is fully faithful with essential image generated under colimits by SmG
S [F ] [Bac21, Corollary 3.14].

We have TGB = AGB/AGB \ 0 ∈ SpcG(B)∗, and we obtain TG = TGS ∈ SpcG(S)∗ by base change. We
define

SHG(S) = SH(S // G) = SpcG(S)∗[(T
G)−1]

and denote by

SHG(S)[F ] ⊂ SHG(S)

the subcategory generated under colimits by (TG)∧n ∧ Σ∞+ (SpcG(S)[F ]), for n ∈ Z.

Warning C.2. While we can make this definition for any S and G, the resulting category is most well-
behaved if G is tame, i.e. |G| is invertible on S. Indeed this assumption is needed for most non-trivial
results of [Hoy17].

C.3. Models for colocalizations at F .

Definition C.3. Let F be a family of subgroups of G. Then the geometric universal F-space over G is
the presheaf on SmG

S defined by

EF(T ) =

{
∅, T 6∈ SmG

S [F ] (i.e. there exists x ∈ T such that stab(x) 6∈ F)

∗ T ∈ SmG
S [F ].

In particular we write EG for EFtriv

We have the following proposition extracted from [GH] or [Bac21].

Proposition C.4. Suppose that is F a family.

(1) Consider the adjunction induced by the inclusion F ⊂ Fall

u! : SpcG(S)[F ] � SpcG(S) : u∗.

There is canonical equivalence of endofunctors

u!u
∗(−) ' EF ×−.

(2) Consider the stabilized adjunction

u! : SHG(S)[F ] � SHG(S) : u∗.

There is canonical equivalence of endofunctors

u!u
∗ ' EF+ ∧ −.

(3) The presheaf EF is motivic local.
(4) The presheaf EF is represented by an ind-smooth G-scheme.

Proof. For (1) and (2) see [Bac21, Lemmas 3.15 and 3.52]. For (3) and (4) see [GH, Proposition 3.3,
Example 3.5, Proposition 3.7]. �
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C.4. Quotients. Let S be a G-scheme. A quotient of S by G is an initial G-scheme under S with
trivial G-action. Quotients are not guaranteed to exist, but this is so if the action is free and S is
quasi-projective [Sta, Tag 07S7]; equivalently the stack S // G is in fact a scheme. When working with

quotients, we thus let SmG
S denote Smqaff

S//G or Smqproj
S//G .4 Still assuming that S has free G-action, the

morphism S → S/G is finite étale (since it is a G-torsor and G is finite discrete, whence finite étale),
and hence S/G is smooth over some base B if S is. All in all we see that there is a functor

(−)/G : SmG
B [Ftriv]→ SmB

which is in fact a partial left adjoint to

triv : SmB → SmG
B .

Proposition C.5. Let B have the trivial G-action. There are colimit-preserving functors

(−)/G : SHG(B)[Ftriv]→ SH(B) and SpcG(B)[Ftriv]→ Spc(B)

such that the following hold.

(1) The following diagram commutes

Smqproj
B//G [Ftriv] SmB

SpcG(B)[Ftriv] Spc(B)

SHG(B)[Ftriv] SH(B)

(−)/G

(−)/G

Σ∞+ Σ∞+

(−)/G

(2) The right adjoint to (−)/G is given by SH(B)
triv−−→ SHG(B)

∧EG+−−−−→ SHG(B)[Ftriv], and similarly
for Spc(−).

(3) The functors (−)/G are oplax symmetric monoidal.

Proof. (1, 2) See [Bac21, Corollary 3.60].
(3) Consequence of being left adjoint to a symmetric monoidal functor [Hau20, Theorem 4.5]. �

Lemma C.6. For E ∈ SH(S) and F ∈ SHG(S) we have (EG+ ∧ Etriv ∧ F )/G ' E ∧ (EG+ ∧ F )/G.

Proof. This follows from the fact that by construction, SHG(S)[Ftriv]
(−)/G−−−−→ SH(S) is an SH(S)-module

functor [Bac21, proof of Corollary 3.60]. �

Definition C.7. We call the composite functor

(−)hG : SHG(S)
∧EG+−−−−→ SHG(S)[Ftriv]

(−)/G−−−−→ SH(S)

the geometric homotopy orbits functor.
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